风力发电基础知识及风电液压应用
风力发电基础知识及风电液压应用
风力发电根底知识及风电液压应用一、风的形成地球外表上,受太阳加热的空气较轻,上升到高空;冷却的空气较重,倾向于去补充上升的空气。
这就导致了空气的流动--风。
全球性气流、海风及陆风、山谷风的形成大致都如此。
风能是地球外表空气移动时产生的动能,即风的动能,是太阳能的一种表现形式。
二、风力发电的原理及优缺点风力发电的原理说起来非常简单,最简单的风力发电机可由叶轮和发电机两局部构成,如图1所示。
空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动叶轮旋转。
如果将叶轮的转轴及发电机的转轴相连,就会带动发电机发出电来。
风力发电的原理这么简单,为什么仅20世纪的中后期才获得应用呢?第一,常规发电还能满足需要,社会生产力水平不够高,还无法顾及降低环境污染和解决偏远地区的供电问题。
第二,能够并网的风力发电机的设计及制造,只有现代高技术的出现才有可能,20世纪初期是造不出现代风力发电机的。
〔图一)风力发电有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,海关,它用蓄电池蓄能,以保证无风时的用电;二是风力发电及其他发电方式〔如柴油机发电〕相结合,向一个单位或一个村庄或一个海岛供电;三是风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要开展方向。
我们这里所说的风力发电都是指大功率风机并网发电。
风力发电的优缺点三、现代风机的构造及技术特点。
图一所示的风力发电机发出的电时有时无,电压和频率不稳定,是没有实际应用价值的。
一阵狂风吹来,风轮越转越快,系统就会被吹跨。
为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等,现代风机的示意如图二、三、四所示。
〔图二〕〔图三〕〔图四〕四、风力发电机组的分类和主要构成一〕、风力发电机组的构成风力发电机组的主要组成局部:-叶轮:将风能转变为机械能。
-传动系统:将叶轮的转速提升到发电机的额定转速-发电机:将叶轮获得的机械能再转变为电能。
风电操作技术培训液压与气动系统
风电操作技术培训液压与气动系统风电操作技术培训-液压与气动系统随着新能源的不断发展,风电行业也得到了快速增长。
而在风电场建设和维护过程中,液压与气动系统起着至关重要的作用。
本文将重点介绍风电操作技术中液压与气动系统的应用和培训。
一、液压系统在风电操作中的应用在风力发电机组中,液压系统承担着传动、控制和调节等重要任务。
液压系统能够通过液体的压力传递动力,并在系统中实现多种功能。
1.液压传动系统液压传动系统主要用于风力涡轮机组的变桨、变翅等机构的控制。
通过液压缸和液压马达等设备,能够实现叶片的定位和调节,保证风力发电机组在不同环境下的高效运行。
2.液压控制系统液压控制系统主要用于控制风力涡轮机组的各个部件,如变速箱、刹车、升降系统等。
通过控制液压阀门的开关,能够实现对风力发电机组的灵活操控,提高发电效率。
3.液压调节系统液压调节系统主要包括液压调速器、液压缸等设备。
通过调整液压传动中的压力、流量等参数,能够实现风力发电机组的调速、负荷的平稳分配等,提高风力发电的整体性能。
二、液压系统培训的重要性风电操作技术涉及到复杂的液压系统,只有经过专业的培训,操作人员才能够正确、安全地进行维护和操作。
1.安全性液压系统涉及到高压液体的传输和控制,一旦操作不当或发生故障,可能导致系统泄漏、压力失控等严重后果。
经过液压系统培训,操作人员能够掌握安全操作技巧,提高事故的预防和处理能力。
2.效率性液压系统的优化调节能够提高风力发电机组的效率,反之则可能导致发电效果不佳。
培训能够让操作人员了解液压系统的工作原理和调节方法,以提高发电效率,降低能耗成本。
三、气动系统在风电操作中的应用除了液压系统,气动系统也在风电操作中扮演着重要的角色。
气动系统通过气体的压缩和控制,实现对风电设备的动力传递和执行机构的操作。
1.气压传动系统风力涡轮机组中的部分控制装置采用气动传动,如风向偏航控制、风向偏航调节等。
通过气压缸和气动阀门的结合,能够实现对风力发电机组的动力传递和控制。
风力发电机组液压系统相关知识讲解
• 2).用途
• ◆作卸荷阀用
• ◆作远程调压阀
• ◆作高低压多级控制阀
• ◆作顺序阀
• ◆用于产生背压(串在回油路上)。
35
36
• 3.减压阀:功用是降低系统中某一支路的压力。 • 减压阀是使出口压力低于进口压力的压力控制阀。
37
• 4.电液比例阀概述
•
比例电磁阀是作为功率控制元件,根据输入的电信号电压值的大小,
14
15
16
17
18
19
PART 04
液压系统的组成
20
液压系统的组成
动力部分;电动机、液压泵 工作介质;液压油
执行部分;液压缸 控制部分;控制阀等 辅助部分;油箱、油管、过滤器等
21
电动机
整个系统的动力源,为液压泵提供机械能。
液压泵
将电动机输入的机械能转换为压 力能输出,为执行元件提供压力 油。
Composition of hydraulic system
PART 05 刹车器
Brake
目录 / CONTENTS
PART 06 系统图纸
System drawings
PART 07 日常维护及定检
Routine maintenance and inspection
PART 08 故障处理
Fault handling
右两端分别输入相同压力和流量的油液,则活塞上产生的推力和往返
速度也相等。这种液压缸常用于往返速度相同且推力不大的场合。
27
• 如图所示为单活塞杆式液压缸结构图。缸体1和底盖焊接成一体。活塞2靠支撑环
4导向用Y型密封圈5密封,活塞2与活塞杆3用螺纹连接。活塞杆3靠导向套6、8
风电机组液压系统讲解
• 3)外界侵入的污染
• 油箱防尘性差,容易侵入灰尘、切屑和杂物;油箱没有设 置清理箱内污物的窗口,造成油箱内部难清理或无法清理 干净;切削液混进油箱,使油液严重乳化或掺进切屑;维 修过程中不注意清洁,将杂物带入油箱或管道内等。
• 4)管理不严
• 新液压油质量未检验;未清洗干净的桶用来装新油,使油 液变质;未建立液压油定期取样化验的制度;换新油时, 未清洗干净管路和油箱;管理不严,库存油液品种混乱; 将两种不能混合使用的油液混合使用。
• 节流阀18-1 用于抑制蓄能器预压力并在系统维修时,释 放来自蓄能器16-1的压力油。油箱上装有油位开关2,用 来监视油箱的油位,防止油箱内油溢出或泵在缺油情况下 运转。
• 油箱内的油温由装在油箱上部的热电阻(PT100)测得。 油温达到设定值时会报警。
• 1)液压系统在运转/暂停时的工作情况 • 电磁阀19-1 和19-2(紧急顺桨阀)通电后,使比例阀上的P
工作的灵敏性、稳定性、可靠性和寿命提出了愈 来愈高的要求,而油液的污染会影响系统的正常 工作和使用寿命,甚至引起设备事故。据统计, 由于油液污染引起的故障占总故障的75%以上, 固体颗粒是液压系统中最主要的污染物。可见要 保证液压系统工作灵敏、稳定、可靠,就必须控 制油液的污染。
• 液压油污染原因与危害 • 液压油污染原因 • 1)藏在液压元件和管道内的污染物 • 液压元件在装配前,零件未去毛刺和未经严格清洗,铸造
• 机械刹车机构
• 机械刹车机构由安装在低速轴或高速轴上 的刹车盘与布置在它四周的液压钳构成。 液压钳是固定的,刹车圆盘随轴一起转动。 由PLC控制刹车钳的打开和关闭。实现风力 发电组轴系的启、停。为了监视机械刹车 机构的内部状态,刹车钳内部装有指示刹 车片厚度的传感器。
风力发电基础知识
维护成本高:风力发电机组需要 定期维护维护成本较高
添加标题
添加标题
添加标题
添加标题
投资成本高:建设风力发电场需 要大量生态环境产生一定影响如噪音、 电磁辐射等
风力发电的适用场景
风力资源丰富的地区如海岸线、山地、草原等 远离电网的偏远地区如海岛、边远山区等 需要清洁能源的地区如环保要求高的城市、工业园区等 需要稳定电力供应的地区如医院、学校、工厂等
单击此处添加副标题
风力发电基础知识
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 风力发电的原理 风力发电的优势与局限性 风力发电技术的发展历程 风力发电的应用前景 风力发电的实际应用案例
01
添加目录项标题
02
风力发电的原理
风力发电的工作原理
风力发电的基本原理:利用风力推动风力发电机的叶片旋转从而产生电能。 风力发电机的结构:包括叶片、转子、发电机、塔架等部分。 风力发电的过程:风力推动叶片旋转转子带动发电机发电电能通过输电线路传输到电网。 风力发电的优点:清洁、可再生、环保、无污染。
采用风能预测技术:通过风能预测技术提高风力发电系统的稳定性和效 率
提高风电机组稳定性的措施与技术保障
采用先进的控制技术如 自适应控制、模糊控制 等提高风电机组的稳定 性和可靠性。
加强风电机组的维护和 保养定期检查和更换易 损部件确保风电机组的 正常运行。
采用先进的风电机 组设计如采用多叶 片、可变桨距等设 计提高风电机组的 稳定性和效率。
德国:Nordsee-Ost风电场欧洲最大的 海上风电场之一
中国:内蒙古辉腾锡勒风电场中国最大的 风电场之一
美国:lt Wind Energy Center美国最大 的风电场之一
风电操作技术培训液压系统
风电操作技术培训液压系统液压系统在风电操作技术中扮演着重要的角色。
本文将详细介绍液压系统在风电操作中的应用,同时探讨液压系统的工作原理和常见故障排除方法。
一、液压系统在风电操作中的应用在风电领域中,液压系统广泛应用于风力发电机组的控制系统和机械传动系统中。
在风力发电机组的控制系统中,液压系统主要用于风轮、偏航系统和调节系统的运动控制,确保风力发电机的安全高效运行。
在机械传动系统中,液压系统则用于叶轮变桨机构、变桨电机和变桨驱动器等关键部件的传动控制,确保风力发电机组的叶轮角度和转速控制。
二、液压系统的工作原理液压系统是基于流体力学原理的工作系统,其主要由液压泵、液压缸、阀门、油箱等组成。
液压泵将机械能转换为液压能,通过液压泵将液体推进到液压缸中,从而实现机械传动和运动控制。
液压系统的工作原理可以简单概括为以下几个步骤:1. 液压泵启动:当液压系统启动时,液压泵开始旋转,通过吸入液体并排出液体的方式,形成一个连续的液压能力。
2. 液压泵输出液压能:液压泵将输入的机械能转化为液压能,通过压力传递给液压缸。
3. 液压缸执行工作:液压缸接受到液压能后,通过活塞推动和传动机构,实现机械元件的运动控制。
4. 控制阀的作用:液压系统中的各种阀门,包括方向控制阀、流量控制阀和压力控制阀等,起到控制液压能流动方向、流量和压力的作用。
5. 液压能的回收:液压缸完成一定工作后,液压能需要回收,通常通过液压缸的负载返回和溢流阀控制。
三、常见故障排除方法液压系统在风电操作中常常面临各种故障,下面介绍几种常见故障的排除方法:1. 液压泵无压力输出:可能是液压泵内部损坏或阀门关闭不良,此时需要检查和更换液压泵或阀门。
2. 液压缸运动缓慢或停止:可能是液压泵输出液体流量不足或系统中存在漏油现象,此时需要检查和更换液压泵,同时修复漏油点。
3. 液压系统压力异常升高:可能是压力控制阀故障或其他阀门关闭不良,此时需要检查和更换压力控制阀或其他阀门。
风力发电机组及应用:定桨距风力发电机组的液压系统(电)
通
常它由两个压力保持回路组成, 通过蓄能器供给叶尖
扰流器,
通过蓄能器供给机械刹车机构。这
。当
需要停机时,两回路中的常开电磁阀先后失电,叶尖扰流器
一路压力油被泄回油箱,叶尖动作;稍后,ቤተ መጻሕፍቲ ባይዱ械刹车一路压
力油进入刹车油缸,驱动刹车夹钳,使叶轮停止转动。在两
个回路中各装有两个压力传感器,以指示系统压力,控制液
图4-7 定桨距风力发电机组的液压系统
• 图左侧是气动刹车压力保持回路,压力油经油泵、精滤油 器进入系统。溢流阀用来限制系统最高压力。开机时电磁 阀12-1接通,压力油经单向阀7-2进入蓄能器8-2,并通过单 向阀7-3和旋转接头进入气动刹车油缸。压力开关9-2由蓄 能器的压力控制,当蓄能器压力达到设定值时,开关动作,电 磁阀12-1关闭。
• 由于系统的内泄漏、油温的变化以及电磁阀的动作,液压 系统的工作压力实际上始终处于变化的状态之中。其气动 刹车与机械刹车回路的工作压力分别如图4-8(a)、(b) 所示。
图4-8 气动刹车与机械刹车压力图
图4-8 气动刹车与机械刹车压力图
• ①开机时液压泵启动;②内泄漏引起的压力降;③液压泵 重新启动;④温度引起的压力升高;⑤电磁阀动作引起的 压力降;⑥停机时电磁阀打开
压泵站补油和确定刹车机构的状态。
• 图4-7所示为FD43600kW风力发电机 组的液压系统。由 于偏航机构也引入 了液压回路,它
1—油箱;2—液 压泵;3—电动机; 4—精滤油器;5—油 位指示器;6—溢流 阀;7—单向阀;8— 蓄能器;9—压力开 关;10—节流阀; 11—压力表; 12,13,16—电磁阀; 14—刹车夹钳; 15—突开阀
偏航系统有两个工作压力,分别提 供偏航时的阻尼和偏航结束时的制动力。工作压力仍由蓄 能器8-1保持。由于机舱有很大的惯性,调向过程必须确保 系统的稳定性,此时偏航制动器用作阻尼器。工作时,4DT 得电,电磁阀左侧接通,回路压力由溢流阀保持,以提供调向 系统足够的阻尼;调向结束时,4DT失电,电磁阀右侧接通, 制动压力由蓄能器直接提供。
液压技术在风力发电中的重要性
液压技术在风力发电中的重要性风力发电是目前应用效果较好的发电方式,但其技术水平仍然有待提高,液压技术是机械传动方式的一种,由于风力发电机组在发电过程中对动力系统和调节系统的要求较高,液压系统具有功率大、结构简单、控制灵活、精度高等优点,符合风力发电的特殊要求,在风力发电中发挥着重要的作用,同时被广泛应用于各个领域。
一、风力发电中液压系统的应用1、定桨距风力机功率控制液压系统在定桨距控制的风力机组中,风轮吸收功率随风速的变化而变化(桨叶的结构使得它在风的作用下发生弹性变形)。
当风速超过额定风速时,必须通过叶片失速效应来降低风能利用率Cp。
失速控制一般采用叶尖扰流器控制。
其方法是将一个液压单元装在叶轮轮毂处,在每个桨叶端部各装一个液压缸,叶尖扰流器同液压单元相联,通过连接在液压缸活塞杆和叶尖轴之间的钢丝绳驱动叶尖运动。
当风轮转速低于额定转速,发电机输出功率未达到额定功率时,液压缸驱动叶尖收回,使叶尖与叶片主体靠拢成一条直线。
当风速超过额定风速,发电机输出功率超过最大功率限度时,液压系统开始泄压,叶尖在离心力和弹簧力的作用下弹出,在叶尖轴上的螺旋导槽的作用下,与叶片主体成90°,增大阻力叶轮转速降低。
典型的叶尖扰流器液压系统原理图见图1。
其工作原理如下所述:启动风力机时,电磁换向阀通电,断开液压缸的回油路,液压泵输出压力油,收紧叶尖。
油压继续上升,到过压继电器控制动作的压力时,过压继电器发出信号,经控制器延时后,停止电动机转动,在延时过程中,压力继续上升,达到溢流阀设定的压力值时溢流阀动作,系统压力不再升高。
由于液压系统不可避免的泄漏,使液压缸压力下降,当低于低压继电器设定压力时,低压继电器发出信号,液压泵重新启动,补充油压。
当发电机输出功率超过最高功率限制时,电磁换向阀断电,液压缸的油液流回油箱,系统泄压,叶尖在离心力和弹簧力作用下打开,叶轮转速降低。
2、偏航系统中液压技术应用偏航系统的主要功能分为驱动和制动,主要为风轮提供锁紧力矩,使风轮保持迎风状态,保证风力发电机组的有效运行。
风力发电中的液压系统的应用
风力发电中的液压系统的应用摘要: 近年来,我国的风电规模逐渐扩大,而大部分风力发电机组所处环境十分恶劣,机组经受各种极端工况的考验,因此不断发生各类事故,所以目前各风力发电企业对于风电机组安全运行的要求也越来越高,而液压系统对风机平稳运行起着至关重要的作用,因此需要保证液压系统的稳定性。
保证液压系统的良好运行,可有效提高风机的可利用率。
本文对风力发电中的液压系统的应用进行了分析,对液压系统的稳定运行具有重要意义,同时也为液压系统的维护保养与维修提供了理论指导。
关键词:风力发电;液压系统;液压泵引言风能作为一种清洁的可再生能源,逐渐被各国重视起来,近年风力发电在中国得到了高速的发展。
液压技术由于可以达到大功率输出、可靠的控制精度、所占空间少等要求,在风电行业中得到广泛的应用。
在变桨距风力发电机组中,液压站的主要任务是执行机组的高速轴刹车和偏航刹车以及锁风轮锁。
1液压系统概述在风力发电整体系统当中,液压设计原理由于其优良的性能被广泛应用,这其中有前文提到的偏航控制系统和刹车制动功能,除此以外在风机齿轮箱传动系统也应用到了液压原理。
由于液压系统自身的稳定性、及时性能够有效提升风力发电整体系统的可靠性和智能化,因此国外知名的风力发电研究公司维斯塔斯公司针对变桨设计当中引用了液压控制原理,此种设计能够达到使得高速轴的制动性更加平稳及可靠,使得液压系统的优良特性达到最大程度的利用,有效提升风力发电系统的智能性。
在此基础上,风力发电系统中应当添加相关更为先进的传感设备,达到更好的采集和分析相关风能数据,使得风力发电系统整体运作更为合理科学,提升系统本身对风能的转化率,进而提升其经济价值和战略目的。
2风力发电中的液压系统的应用2.1 风电机组的功率控制液压系统定浆距风电机组功率控制液压系统结构在不同环境下的工作流程是不同的,当风电机组所处区域风力较小时,叶轮转速经过齿轮箱增速后低于发电机额定转速时,液压系统会通过控制叶片末端的液压单元来驱动叶片旋转,达到增加叶轮旋转速度目的;当风速过大导致发电机转速超过其额定转速时,液压系统进行泄压,此操作将使得叶片末端发生位置改变,改变成与叶片主体呈直角的状态,使得叶片风阻加大,降低叶轮旋转速度。
风电液压系统原理简介
05 辅助元件与系统设计
辅助元件类型及作用
过滤器
用于清除液压系统中的杂质和 污染物,保证油液的清洁度,
维护系统的正常运行。
油箱
储存液压系统所需的油液,具 有散热、沉淀杂质和分离水分 的作用。
热交换器
用于液压系统的加热和冷却,保 持系统油温在适宜范围内,提高 系统的工作效率和稳定性。
蓄能器
储存压力能,在需要时释放能 量,以补充系统泄漏或用作应
风电液压系统原理简介
contents
目录
• 风电液压系统概述 • 液压泵与马达 • 液压阀与控制系统 • 液压缸与执行机构 • 辅助元件与系统设计 • 风电液压系统维护与故障处理
01 风电液压系统概述
风电液压系统定义与作用
定义
风电液压系统是利用液体压力能 来传递动力和进行控制的一种系 统,是风力发电机组中的重要组 成部分。
按照设计图纸制造液压系统,进行现场安装 调试和试运行,确保系统正常运行。
06 风电液压系统维护与故障 处理
风电液压系统维护方法
定期检查
对液压系统的关键部件进行定期 检查,包括液压泵、液压马达、 液压缸、阀门等,确保其工作正
常。
清洁保养
保持液压系统的清洁,定期更换液 压油,清洗油箱和滤清器,防止杂 质和污染物进入系统。
急能源。
风电液压系统设计原则
安全性原则
确保系统在各种工况下的安全稳定运 行,防止因液压故障导致风机损坏或 人员伤亡。
可靠性原则
选用高品质的液压元件和先进的控制 技术,提高系统的可靠性和稳定性。
经济性原则
在满足系统性能要求的前提下,尽量 降低制造成本和运行费用。
可维护性原则
简化系统结构,方便日常维护和检修, 降低维修成本和时间。
风力发电基础基础知识
第2部分 发展风力发电的意义
发展风力发电的直接好处是:
•安全、清结、无污染--基本不破坏人类(我 们自己)的生活环境 •同时缓解诸如传统能源日益紧缺等问题 •风力发电使人类向文明又迈进了一步
第3部分 风力发电的基本原理
“人类很早就开始使用发电技术了,发电 技术是通过某种动力来带动发电机发电。传 统的动力来自于水能和热能。利用水轮机将 水能转化为电能的称之为水力发电;利用汽 轮机将化石燃料产生的蒸汽的热能转化为电 能的称之为火力发电。风能也是一种动力, 也可以用来发电,我们称之为风力发电。”
第6部分 风力发电机组的基本结构
国标要求: • 齿轮箱的机械效率 • 齿轮箱的工作环境温度为 • 齿轮箱的最高温度 • 齿轮箱各轴承间的温度差 • 齿轮箱的噪音 • 齿轮箱的使用寿命(正常情况下) • 齿轮箱的保用期(正常情况下)
>97% -40~50℃ ≤80℃ ≤15℃ ≤85dB(A) ≥20年 2年
第6部分 风力发电机组的基本结构 1.25MW齿轮箱
第6部分 风力发电机组的基本结构 2MW传动链——齿轮箱
第6部分 风力发电机组的基本结构
国家为风力发电机组的齿轮箱制定了专 门的标准:《GB/T 19073—2008 风力发电机 组 齿轮箱》是该部件的最新标准。该标准在 GB/T 19073—2003基础上进行了修订。
变频器冷却器 高速轴刹车 底架
偏航系统 塔架
蓄能器 主冷却器
为风力发电机组的机械结构图
第6部分 风力发电机组的基本结构
齿轮箱是有齿箱风力发电机组的关键部 件。齿轮箱在提升风轮转速的同时,还传递 来自风轮的功率,承受着巨大的机械载荷。 受当代制造技术的制约,齿轮箱是风力发电 机组中容易产生故障的主要部件之一。从某 种意义上讲,齿轮箱运行的可靠性,直接影 响风力发电机组运行的可靠性,影响风力发 电机组制造厂商的信誉和品牌。
风力发电中液压系统的应用概述
兆瓦级风力发电机组在全球商业运行中得到了广 为关注, 然而由于这种机组性能的要求其体积必然十 分庞大[5]。 这样,就要求在生产和发电等过程中所需的 动力系统和调节系统有大功率的输出、 可靠的控制精
收 稿 日 期 :2010-04-22 作 者 简 介 :贾 福 强 (1983- ), 男 , 硕 士 研 究 生 , 主 要 研 究 风 力 发 电 液 压 变 桨 系统。
Hydraulics Pneumatics & Seals/No.8.2010
风力发电中液压系统的应用概述
贾福强 高英杰 杨育林 崔 筱
(燕山大学 河北省重型机械流体动力传输与控制重点实验室,河北秦皇岛 066004)
摘 要:能源的开发和利用是人类进入 20 世纪不断探索的主题,风力发电作为环保、经济型能源受到国内外研究工作者的 广 泛 关 注 ,
应用
由于兆瓦级风力发电机组性能要求 (需要相当大 的 扭 矩 来 驱 动 电 动 机 发 电 ),所 以 无 论 是 桨 叶 、 塔 架 还 是机舱其体积相当巨大, 这样整个风机的重量也随之 增加。
桨叶作为风能的捕获装置,其设计和生产是风力
11
液压气动与密封/2010 年第 8 期 发电的重要环节。 现阶段叶片的最大风能利用系数约 为 0.45 左右,可见叶片翼型的改进上还有较大的空间, 但是外形结构改进不可能使兆瓦级风机的桨叶体积发 生很大变化。 也就是说,叶片体积随功率增加而增加的 趋势是不可避免的。
度、所占空间少等等特点。 液压系统拥有符合上述要求 的特性(单位体积小、重量轻、动态响应好、扭矩大并且 无 需 变 速 机 构 的[1]),所 以 在 风 电 行 业 中 液 压 系 统 得 到 广泛应用。 这其中主要包括有:生产过程中液压设备的 使用、运输安装过程中、运行发电过程中、甚至是维修 检测等。 同时风力发电对其组成构件和相关系统有适 应其本身特点的要求:工作的环境适应能力强、故障率 低、维修简便等。 可见液压系统仍需要改进和创新来突 破相关限制, 才能更好地使液压系统在风电行业得到 广泛应用。
风力发电基础知识资料
一 、风力发电机组的分类
风力发电系统的分类——按功率调节方式
定桨距风机:桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自 动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。 变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过 额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内。 主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控 制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功 率增加。
风力发电基础知识
课程目录
一 、风力发电机组的分类 二 、风力发电机组的功能原理 三 、风力发电机组的理论基础 四 、风力发电机组的空气动力基础知识 五、 风力发电机组设计风区分类
一 、风力发电机组的分类 风力发电系统的分类——风轮轴向
垂直轴
水平轴
一 、风力发电机组的分类 风力发电系统的分类——叶片数量
一 、风力发电机组的分类 风力发电系统的分类——按发电机形式(基本类型)
Grid
Gear box
Ps IG
Compensation
(a) 固定转速的异步发电机组
Ps DFIG
Gear box
sPs
AC DC
sPs
DC AC
Converter
(b) 双馈异步发电机组
Ps
PMSG
AC DC
DC AC
Converter
构成风轮机空气动力特性曲线
三、风力发电机组的理论基础
Cp (, )
0.5
C p max C p max
0.4
3
0.3
风力发电基础知识及风电液压应用--1
海上风场的建设成为未来发展趋势风机噪声将随叶尖速度急剧上升. 对一定的功率而言,传动链负载与噪声之间存在此消彼长的关系,对于陆地风场,噪声是一个主要的制约;离陆地30公里以外的海上风场的风机噪声不会如此敏感;另外,风力资源和大型传动部件的运输都是海上风力发电发展的理由。
3、大功率风机的叶片桨距是连续变化的,未来变桨调节控制将成为标配。
4、变速恒频,利用变速恒频发电方式,风力机就可以改恒速运行为变速运行,这样就可能使风轮的转速随风速的变化而变化,使其保持在一个恒定的最佳叶尖速比,使风力机的风能利用系数在额定风速以下的整个运行范围内都处于最大值。
5、采用直接驱动发电机在原理上通过转子滑环与励磁电路达到同步,风力发电机直接与风机转子联接而取消齿轮箱的优势是降低的设备投资、减小了机舱重量、传动链效率损失、维修成本及维修停机时间;六、风力发电设备液压及密封应用一)、风电液压系统风机是有许多转动部件的。
机舱在水平面旋转,随时跟风。
风轮沿水平轴旋转,以便产生动力。
在变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况。
在停机时,叶片尖部要甩出,以便形成阻尼。
液压系统就是用于调节叶片桨矩、阻尼、停机、刹车等状态下使用。
1、驱动系统风力发电机使用两个驱动系统,即制动系统(偏转器和主轴一高速轴回转系统)和叶片角度控制及机舱偏转器回转控制系统。
制动系统用液压控制,而叶片和偏转器的控制则用液压或电气驱动方式。
采用那一种传动的争论在风力发电机的设计中也不例外。
至于采用液压还是电气来控制叶片角度的输出功率、速度或频响,一般取决于制造厂家的经验而定。
2、变桨控制系统叶片角度(变桨)控制系统设计时主要应考虑当风力发电机遇到像台风等强风力时,机组能立即停止运行,以使电源中断,而此时的叶片需要控制在和风向相平行的位置上,确保叶片不再转动,电源中断后,机组的能量贮存系统开始工作,如液压蓄能器或蓄电池。
用液压控制时,用液压直线驱动器(液压缸),用电气控制时,采用电气回转式驱动器。
风电液压变桨驱动方式
风电液压变桨驱动方式风电液压变桨驱动方式是目前广泛应用于风力发电领域的一种关键技术。
其通过利用液压系统来控制风轮的桨叶角度,从而调整风轮受力状态,实现风力发电机组的高效工作。
本文将全面介绍风电液压变桨驱动方式的原理、特点以及在风力发电中的应用。
风电液压变桨驱动方式的基本原理是通过改变桨叶角度,调整风力发电机组的受力状况,以达到最佳风能捕获效果。
液压系统通过将液压油输送到液压缸中,推动桨叶进行角度调整。
具体而言,液压系统由液压泵、控制阀、液压缸等组成,液压泵将液压油从储油罐中吸入,通过控制阀调整液压油的流动方向和速度,再输送到液压缸中。
液压缸受到液压油的推动,将桨叶进行相应角度的转动。
风电液压变桨驱动方式具有以下几个特点。
首先,系统运行平稳可靠,具有很高的控制精度。
其次,液压系统具有更大的输出力和调节范围,能够满足风力发电机组在不同风速下的运行需求。
再次,液压系统兼具了较高的功率密度和节能性能,能够更有效地将风能转化为电能。
此外,液压系统的结构简洁紧凑,占用空间较小,有利于提高风力发电机组的整体性能和可靠性。
在风力发电中,风电液压变桨驱动方式具有重要的应用价值。
首先,通过调整桨叶角度,风力发电机组可以更好地适应不同风速条件下的工作要求,提高风能的利用效率。
其次,液压系统的快速响应特性,使得风力发电机组能够在瞬间响应风能变化,有效抵抗风力的冲击和涡流的干扰,保持机组的稳定运行。
此外,风电液压变桨驱动方式还具备智能化的特点,可以通过传感器和控制系统实时监测和调节桨叶角度,提高整个风力发电系统的智能化程度。
综上所述,风电液压变桨驱动方式是一种生动、全面、有指导意义的关键技术,其通过液压系统实现风力发电机组桨叶角度的调整,提高风能的利用效率和风力发电系统的整体性能。
在未来的发展中,我们应该进一步研究和优化风电液压变桨驱动方式,提高其控制精度和响应速度,推动风力发电技术的继续创新,促进清洁能源的可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电基础知识及风电液压应用一、风的形成地球表面上,受太阳加热的空气较轻,上升到高空;冷却的空气较重,倾向于去补充上升的空气。
这就导致了空气的流动--风。
全球性气流、海风与陆风、山谷风的形成大致都如此。
风能是地球表面空气移动时产生的动能,即风的动能,是太阳能的一种表现形式。
二、风力发电的原理及优缺点风力发电的原理说起来非常简单,最简单的风力发电机可由叶轮和发电机两部分构成,如图1所示。
空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动叶轮旋转。
如果将叶轮的转轴与发电机的转轴相连,就会带动发电机发出电来。
风力发电的原理这么简单,为什么仅20世纪的中后期才获得应用呢?第一,常规发电还能满足需要,社会生产力水平不够高,还无法顾及降低环境污染和解决偏远地区的供电问题。
第二,能够并网的风力发电机的设计与制造,只有现代高技术的出现才有可能,20世纪初期是造不出现代风力发电机的。
(图一)风力发电有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,海关,它用蓄电池蓄能,以保证无风时的用电;二是风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电;三是风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。
我们这里所说的风力发电都是指大功率风机并网发电。
风力发电的优缺点三、现代风机的结构与技术特点。
图一所示的风力发电机发出的电时有时无,电压和频率不稳定,是没有实际应用价值的。
一阵狂风吹来,风轮越转越快,系统就会被吹跨。
为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等,现代风机的示意如图二、三、四所示。
(图二)(图三)(图四)四、风力发电机组的分类和主要构成一)、风力发电机组的构成风力发电机组的主要组成部分:-叶轮:将风能转变为机械能。
-传动系统:将叶轮的转速提升到发电机的额定转速-发电机:将叶轮获得的机械能再转变为电能。
-偏航系统:使叶轮可靠地迎风转动并解缆。
-其它部件:如塔架、机舱等-控制系统:使风力机在各种自然条件与工况下正常运行的保障机制,包括调速、调向和安全控制。
1、叶轮由叶片和轮毂组成,是机组中最重要的部件:决定其性能和成本,目前多数是上风式,三叶片;也有下风式,两叶片。
叶片与轮毂的连接有固定式(定桨距),及可动式(变桨距)。
叶片多由复合材料(玻璃钢)构成。
2、传动系统由风力发电机中的旋转部件组成。
主要包括低速轴,齿轮箱和高速轴,以及支撑轴承、联轴器和机械刹车。
齿轮箱有两种:平行轴式和行星式。
大型机组中多用行星式(具有重量和尺寸优势)。
有些机组无齿轮箱,即直驱式。
传动系的设计按传统的机械工程方法,主要考虑特殊的受载荷情况。
齿轮箱可以将很低的风轮转速(17 - 48转/分)变为很高的发电机转速(通常为1500转/分)。
同时也使得发电机易于控制,实现稳定的频率和电压输出。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。
例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件。
3、机舱与偏航机构包括机舱盖,底板和偏航系统。
机舱盖起防护作用,底板支撑着传动系部件。
偏航机构是驱动机舱在回转轴承上相对塔架转动的装置,也称为对风装置,其作用是能够快速平稳地对准风向,以便风轮获得最大的风能,偏航系统的主要部件是一个连接底板和塔架的大齿轮。
上风式机组采用主动偏航,由偏航电机或液压马达驱动,由偏航控制系统控制。
偏航刹车用来固定机舱位置。
4、控制系统是现代风力发电机的神经中枢。
现代风机是无人值守的。
以600千瓦风机为例,一般在4米/秒左右的风速自动启动,在14米/秒左右发出额定功率。
然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。
现代风机的存活风速为60-70米/秒,也就是说在这么大的风速下风机也不会被吹坏。
通常所说的12级飓风,其风速范围也仅为32.7-36.9米/秒。
风机的控制系统,要在这样恶劣的条件下,根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网。
并监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机。
二)、风力发电机组的分类及特征1、风力发电机组-- 定桨距失速调节型定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。
失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。
在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。
失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。
其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。
2、风力发电机组--变桨距调节型变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。
其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45°,当转速达到一定时,再调节到0°,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。
随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。
3、风力发电机组-- 定速机型:-- 发电方式简单,造价低;-- 对电网依赖程度高。
4、风力发电机组-- 变速机型:-- 电气设备价高;-- 电能品质好。
五、风电技术发展趋势1、更大的尺寸和功率叶片直径/功率比逐年增加. 以1.5MW风机为例,自1997、2000、2003年直径分别为65米、69米、74米2、海上风场的建设成为未来发展趋势风机噪声将随叶尖速度急剧上升. 对一定的功率而言,传动链负载与噪声之间存在此消彼长的关系,对于陆地风场,噪声是一个主要的制约;离陆地30公里以外的海上风场的风机噪声不会如此敏感;另外,风力资源和大型传动部件的运输都是海上风力发电发展的理由。
3、大功率风机的叶片桨距是连续变化的,未来变桨调节控制将成为标配。
4、变速恒频,利用变速恒频发电方式,风力机就可以改恒速运行为变速运行,这样就可能使风轮的转速随风速的变化而变化,使其保持在一个恒定的最佳叶尖速比,使风力机的风能利用系数在额定风速以下的整个运行范围内都处于最大值。
5、采用直接驱动发电机在原理上通过转子滑环与励磁电路达到同步,风力发电机直接与风机转子联接而取消齿轮箱的优势是降低的设备投资、减小了机舱重量、传动链效率损失、维修成本及维修停机时间;六、风力发电设备液压及密封应用一)、风电液压系统风机是有许多转动部件的。
机舱在水平面旋转,随时跟风。
风轮沿水平轴旋转,以便产生动力。
在变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况。
在停机时,叶片尖部要甩出,以便形成阻尼。
液压系统就是用于调节叶片桨矩、阻尼、停机、刹车等状态下使用。
1、驱动系统风力发电机使用两个驱动系统,即制动系统(偏转器和主轴一高速轴回转系统)和叶片角度控制及机舱偏转器回转控制系统。
制动系统用液压控制,而叶片和偏转器的控制则用液压或电气驱动方式。
采用那一种传动的争论在风力发电机的设计中也不例外。
至于采用液压还是电气来控制叶片角度的输出功率、速度或频响,一般取决于制造厂家的经验而定。
2、变桨控制系统叶片角度(变桨)控制系统设计时主要应考虑当风力发电机遇到像台风等强风力时,机组能立即停止运行,以使电源中断,而此时的叶片需要控制在和风向相平行的位置上,确保叶片不再转动,电源中断后,机组的能量贮存系统开始工作,如液压蓄能器或蓄电池。
用液压控制时,用液压直线驱动器(液压缸),用电气控制时,采用电气回转式驱动器。
装在主轴内的液压直线驱动器,及停止时应用的蓄能器也装在轴内。
国外液压直线驱动器是将液压、电子、电气的优点融合在一起的液压直线驱动装置(Electro-hydraulic system),简称Hybrid 系统,这种系统节能是值得提倡。
这种由液压缸、液压泵、AC 马达、蓄能器、电磁阀、传感器和动力源组成的集成式电气液压伺服驱动系统具有动态性能好,输出功率大,电气安装性和维护性好等优点。
它可以降低液压系统的缺点,如漏油和油污染的影响,使可靠性得到显著提高,而当电力中断时,又能充分显示出液压传动的优点,即和液压缸串联的液压缸,从蓄能器获得供油,使叶片迎风面和风向平行,使叶轮停止转动。
液压系统由带位置传感器的液压缸和双向供油的齿轮泵直接供油,中间没有阀,减少了压力损失和漏油点,这种系统比伺服控制系统节能40%以上。
除上述Hybrid 系统外,在国外,叶片角度控制和偏转器回转也有采用直线式电液伺服比例液压缸和回转型液压比例伺服驱动马达的。
这些系统具有动静态性能好,寿命长等优点,但在节省能耗和油液污染度等方面较Hybrid 系统差。
目前世界各大公司提供的风电液压系统,广泛采用比例伺服闭环控制系统。
AAAA美国Parker 公司为风力发电提供各种液压元件和成套风电系统(包括制动、偏转器和叶片角度等的控制系统)。
角度控制系统由特殊设计的液压缸组成,装在风轮轮毂内,液压缸内装有位置传感器,缸上还集成了所需的液压阀,每台风电设备都设有二三套独立的角度控制系统(每个叶片一个)。
该系统具有高可靠性和安全性,动静态性能好,维护方便,泄漏少等优点。
系统采用高性能比例伺服控制可以由模拟信号或数字信号控制。
Parke 公司提供的阀总成预先都经过严格验,可减少安装调试时间,降低成本,还可节省运行维护费用,油缸。
液压源由过滤性能良好的单独液压站提供。
偏转器回转系统具有良好的保持叶片正确与风向对中,使风力发电具有良好的性能。
Parker 公司可提供电控和液压控制两种系统,液压系统可实现更加紧凑的直接驱动,还具有良好的过载保护,避免部件损坏,系统采用闭环比例伺服控制,动态和静态性能好。