液化天然气的一般特性 Microsoft Word 文档
液化天然气(LNG)特性
液化天然气(LNG)特性LNG是英文Liquefied Natural Gas的简称,即液化天然气。
它是天然气(甲烷CH4)在经净化及超低温状态下(-162℃、一个大气压)冷却液化的产物。
液化后的天然气其体积大大减少,约为0℃、1个大气压时天然气体积的1/600,也就是说1立方米LNG气化后可得600立方米天然气。
无色无味,主要成份是甲烷,很少有其它杂质,是一种非常清洁的能源。
LNG基本参数LNG主要成分是甲烷(90%以上)、乙烷、氮气(0.5-1%)及少量C3~C5烷烃的低温液体。
LNG是由天然气转变的另一种能源形式。
1)LNG的主要成份为甲烷,化学名称为CH4,还有少量的乙烷C2H6、丙烷C3H8以及氮N2等其他成份组成。
2)临界温度为-82.3℃。
3)沸点为-161.25℃,着火点为650℃。
4)液态密度为0.420~0.46T/m3,气态密度为0.68-0.75kg/m3。
5)气态热值38MJ/m3,液态热值50MJ/kg。
6)爆炸范围:上限为15%,下限为5%。
7)辛烷值ASTM:130。
8)无色、无味、无毒、无腐蚀性。
9)体积约为同量气态天然气体积的1/600。
LNG用途车用:LNG是一种清洁、高效的能源,其作为优质的车用燃料,与汽油相比,具有抗爆性能好、发动机寿命长、燃料费用低、环保性能好、储存效率高、安全性好等优点。
城市燃气:LNG可以有效供应管网没有辐射到的地区,并且可以有效缓解城市燃气用气高峰情况下的调峰需求。
季节变化等因素导致用气不均匀性明显,调峰需求突出,各地区城市燃气纷纷建设LNG调峰储备设施,缓解用气不均匀情况。
工业燃料、发电:LNG运输灵活,在管道未辐射情况下,加装气化装置供应工业用户、电厂。
LNG发电在环保、调峰等方面相对于传统电厂具有决定优势,新兴的分布式能源是未来发展方向。
冷能利用:冷能是在自然条件下,利用一定温度差所得到的能量。
在LNG气化过程中,约能产生870Kj/Kg的低温能量。
液化天然气的特点是什么?
液化天然气的特点是什么?
液化天然气(Liquefied Natural Gas, LNG)是天然气在低温高压下液化后的一种形态,它具有以下几个特点:
高能量密度
液化天然气相比于天然气,在相同体积下能够存储更多的能量。
一般情况下,将天然气压缩成压缩天然气(Compressed Natural Gas, CNG)来储存,其储存密度也无法与液化天然气相比。
因此,液化天然气成为了储存天然气的一种有效方式。
安全性高
液化天然气相比于天然气更具安全性。
天然气具有易燃易爆的性质,而液化天然气在低温的情况下不易燃烧。
此外,液化天然气的密度高,不易泄漏,因此在运输和储存过程中相对安全。
适合远距离运输
天然气管道建设成本高昂,且线路受限,难以实现跨国供应。
而液化天然气压缩后,体积缩小了约600倍,容易进行海洋运输。
液化天然气在储存和运输过程中能够维持液态状态,让它更适合长距离运输。
环保
液化天然气相比于其他化石能源,在燃烧过程中产生的二氧化碳和其他污染物相对较少。
这是因为天然气中含有的硫和杂质在液化过程中被去除了。
价格波动较大
液化天然气需经过复杂的加工过程,成本比较高。
实际上,液化天然气的价格波动较大,这也是限制其普及的一个主要因素。
尽管如此,液化天然气对于一些地区或是一些特殊的行业来说,仍然是一种具有发展潜力的能源。
总的来说,液化天然气作为一种新兴的能源形式,具有众多的优点和特点,但同时也存在着一些挑战和限制,需要进一步的发展和探索。
表- 液化天然气的物理性质及危险特征
表- 液化天然气的物理性质及危险特征表 - 液化天然气的物理性质及危险特征
液化天然气的危险特征包括但不限于:
1. 易燃性:液化天然气具有低的闪点和爆炸极限,因此在适当条件下可以发生燃烧和爆炸,并释放大量能量。
2. 高压:液化天然气以极高的压力储存和运输,因此在处理和使用时需要特别小心,避免泄漏和突然释放。
3. 寒冷:液化天然气的温度极低,接触液化天然气可能导致严重的冻伤,应采取适当的防护措施。
4. 气体扩散性:液化天然气在遇到泄漏时会迅速蒸发并扩散,增加了泄露的范围和风险。
因此,及时检测和控制泄漏是至关重要的。
鉴于液化天然气的物理性质和危险特征,我们需要在处理、储存和运输过程中遵循相关的安全标准和操作规程,以最大限度地减少潜在风险。
液化天然气
液化天然气液化天然气(Liquefied Natural Gas)简称LNG,是通过脱水、脱硫、去除杂质及重烃类,在常压下冷却至约-162℃而成的液态天然气。
LNG组分纯净,无色、无味、无毒且无腐蚀性,能量密度大,便于携带和运输,是一种经济性清洁能源,广泛应用于交通运输、工商业、城市高峰调峰等领域。
一、LNG物理化学特性1、组成LNG是以甲烷为主要组分的烃类混合物,其中含有通常存在于天然气中少量的乙烷、丙烷、氮等其他组分。
2、密度LNG的密度取决于其组分,通常在430kg/m3—470kg/m3之间,但是在某些情况下可高达520kg/m3。
密度还是液体温度的函数,其变化梯度约为1.35kg/m3〃℃。
3、温度LNG的沸腾温度取决于其组分,在大气压力下通常在-166℃到-157℃之间。
沸腾温度随蒸气压力的变化梯度约为1.25×10-4℃/Pa。
4、LNG的蒸发(1)蒸发气的物理性质LNG作为一种沸腾液体大量的储存于绝热储罐中。
任何传导至储罐中的热量都会导致一些液体蒸发为气体,这种气体称为蒸发气。
其组分与液体的组分有关。
一般情况下,蒸发气包括20%的氮,80%的甲烷和微量的乙烷。
其含氮量是液体LNG中含氮量的20倍。
当LNG蒸发时,氮和甲烷首先从液体中气化,剩余的液体中较高相对分子质量的烃类组分增大。
对于蒸发气体,不论是温度低于-113℃的纯甲烷,还是温度低于-85℃含20%氮的甲烷,它们都比周围的空气重。
在标准条件下,这些蒸发气体的密度大约是空气密度的0.6倍。
(2)闪蒸如同任何一种液体,当LNG已有的压力降至其沸点压力以下时,例如经过阀门后,部分液体蒸发,而液体温度也将降到此时压力下的新沸点,此即为闪蒸。
由于LNG为多组分的混合物,闪蒸气体的组分与剩余液体的组分不一样,其原因与闪蒸汽所述的原因类似。
作为指导性数据,在压力为1×105Pa~2×105Pa时的沸腾温度条件下,压力每下降l×l03Pa,1m3的液体产生大约0.4kg的气体。
液化天然气(LNG)理化特性简介
液化天然气(LNG)理化特性简介一、LNG的定义及组成液化天然气是指天然气原料经过预处理,脱除其中的杂质后,再通过低温冷冻工艺在-162℃下所形成的低温液体混合物。
天然气是一种混和物,通过制冷液化后,LNG就成为含甲烷(96%以上)和乙烷(4%)及少量C3-C5烷烃的低温液体。
LNG是由天然气转变的另一种能源形式。
二、LNG的基本性质LNG的性质随组分变化而略有不同,一般商业LNG的基本性质为:在-162℃与0.1MPa下,LNG为无色无味无腐蚀性的液体,其密度约为0.43t/m3,燃点为650℃,沸点为-162.5℃,熔点为-182℃,热值一般为37.62MJ/m3,在-162℃时的汽化潜热约为510kJ/kg,爆炸极限为5%-l5%,压缩系数为0.74-0.82。
三、LNG的特性1.LNG的蒸发LNG储存在绝热储罐中,任何热量渗漏到罐中,都会导致一定量的LNG汽化为气体,这种气体被称为蒸发气。
LNG蒸发气的组成主要取决于液体的组成,一般含氮气20%(约为LNG中N2含量的20倍),甲烷80%及微量乙烷,对于纯甲烷而言,-113℃以下的蒸发气比空气重;对于含有氮气20%的甲烷而言,低于-80℃的蒸发气比空气重。
2.LNG的溢出与扩散LNG倾倒至地面上时,最初会猛烈沸腾蒸发,其蒸发率将迅速衰减至一个固定值。
蒸发气沿地面形成一个层流,从环境中吸收热量逐渐上升和扩散,同时将周围的环境空气冷却至露点以下,形成一个可见的云团。
这可作为蒸发气移动方向的LNG指南,也可作为蒸发气-空气混合物可燃性的指示。
3.LNG的燃烧与爆炸LNG具有易燃易爆特性,在-162℃低温条件下其爆炸范围为5%-15%(体积百分比);LNG着火温度即燃点随组分的变化而变化,其燃点随重烃含量的增加而降低,纯甲烷的着火温度为650℃。
四、LNG的优点1.安全可靠LNG的燃点比汽油高230℃,比柴油更高;LNG爆炸极限比汽油高2.5-4.7倍;LNG的相对密度为0.43左右,汽油为0.7左右,比空气轻,即使稍有泄露,也将迅速挥发扩散,不至于自燃爆炸或形成遇火爆炸的极限浓度。
液化天然气的一般特性GBT19202003pdf-上海石油天然气交易中心
液化天然气的一般特性GB/T 19204-2003前言本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。
本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。
根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。
1 范围本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。
本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。
本标准还可供设计和操作LNG设施的工作人员参考。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
液态石油天然气的理化特性表
液态石油天然气的理化特性表
以上为液态石油天然气的一些理化特性和应用特点。
液态石油天然气是一种燃气,由丙烷和丁烷等成分组成。
它具有低沸点和可压缩为液体的特性,广泛用作家用燃料、汽车燃料以及工业用途。
使用液态石油天然气时需要注意安全,避免暴露于明火或高温环境下,并且在存储过程中需要注意防漏和通风问题。
请注意,以上信息仅供参考,具体数值可能会有所变化。
建议在使用前查询相关权威资料以获得最准确和最新的信息。
液化天然气LNG常识 Microsoft Word 文档
天然气在常压下,当冷却至约-162℃时,则由气态转变成液态,称为液化天然气(英文:Liquefied Natural Gas 简称LNG)。
天然气在液化过程中进一步得到净化,甲烷纯度更高,不含二氧化碳、硫化物等。
液化天然气的体积约为同量气态天然气体积的1/600,大大方便储存和运输。
液化天然气比水轻,其重量仅为同体积水的45%。
天然气是一种公认的清洁、高效、优质能源,在化工、电力、城市燃气等工业和民用领域正得到广泛的应用。
随着西气东输、广东和福建海上LNG项目的实施,我国的天然气工业将进入一个快速发展阶段。
天然气作为未来的主要能源,具有许多其他能源所不具备的优势:1、天然气是最清洁的燃料。
天然气燃烧后生成二氧化碳和水,与煤炭和重油比较,燃烧天然气产生的有害物质大幅度减少,如以天然气代替燃煤,可减少氮氧化物排放量80-90%,一氧化碳排放量可减少52%,并基本杜绝二氧化硫的排放和城市酸雨的产生。
2、天然气更经济实惠,比液化石油气便宜约30%至50%。
3、天然气热效高,在同样压力下,天然气在燃烧时较相同体积的大部分其他矿物燃料释放出更高的热值。
4、天然气还具有安全的特点。
液化天然气安全性高,其着火温度为650℃;着火下限比液化石油气高,天然气5%,液化石油气1~1.5%;不含一氧化碳,不会引起一氧化碳中毒。
气态天然气密度比空气轻,如有泄露易于飘散。
在泄露处不容易聚集而引起火灾或爆炸。
燃烧时不会产生一氧化碳等有毒气体,不会危害人体健康。
LNG的主要物理参数常压沸点:-162.15℃ 热值:8500~9200kcal/Nm3液体密度:0.42~0.46kg/L 辛烷值:130(研究法)气化潜热:121.87kcal/Nm3 气液体积比:625:1甲烷含量:75~99%LNG的生产天然气经过净化处理后,通过不同的冷却方式在常压下将温度降至-162.15℃,即可将其液化。
目前常用的天然气液化制冷方式有:经典阶式制冷、混合冷冻制冷、膨胀机制冷等。
表--液化天然气的理化性质及危险特性
表–液化天然气的理化性质及危险特性
液化天然气的理化性质
液化天然气(LNG)是指将天然气在超过临界温度(-82.2°C)和压力(0.1MPa)条
件下减压冷却至约-162°C时的物态,由于经过减压、冷却处理,LNG可以占用原
来天然气约600倍的体积。
以下是LNG的主要理化性质:
物理性质数值
临界温度-82.2℃
临界压力44.8bar
密度低于0.45g/cm³
比热火源接触瞬间瞬间升温速度极快,暴燃时可释放大量热量
注:液化天然气分子量相对较小,因此比空气轻,遇火源燃烧后可多飘散引起
较大的火灾范围。
液化天然气的危险特性
爆炸波的威力大
液化天然气的燃烧热值极大,持续的火焰高温可引起爆炸波,此时雷管炸药在
震荡作用的同时也有极高的温度,从而引发大面积高温燃烧,吞噬一切遇到的物体。
因此,液化天然气的爆炸波将会给整个工厂带来不可承受之压力。
液化天然气容易泄漏引起火灾爆炸
在液化天然气管道中,由于管道破损、设备故障、盗采等原因,很可能产生泄漏,如泄漏不及时得到控制,等到泄漏的LNG到达可燃范围,被着火源点燃,将
会引发火灾爆炸。
液化天然气火灾特性
液化天然气火灾与普通液体火灾有很大不同,在点燃后,由于液化天然气的高
蒸发性、高化学活性,火焰很快延展到其他区域。
如果在高温和高压下点燃LNG,其爆炸威力将会更加可怕。
液化天然气的理化性质及危险特性,具有严重的危害性。
对于液化天然气的使
用和运输,一定要严格按照规定操作,以确保安全生产。
液化天然气的一般特性
液化天然气的一般特性 GB/T 19204-2003前言本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
CEN前言本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。
本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。
根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。
1 范围本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。
本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。
本标准还可供设计和操作LNG设施的工作人员参考。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
液化天然气的理化性质列表
液化天然气的理化性质列表
液化天然气是一种可用于能源生产和储运的天然气形式。
以下
是液化天然气的一些理化性质列表:
1. 沸点:液化天然气的沸点通常在-162℃左右。
在这个温度下,天然气被冷却和压缩,转化为液体状态。
2. 密度:液化天然气的密度相对较高,约为液态水的一半。
由
于其高密度,液化天然气能够以较小的体积存储和运输。
3. 温度稳定性:液化天然气在低温下具有良好的温度稳定性。
这使得液化天然气可以在不失去大部分能量的情况下长时间储存和
运输。
4. 燃烧性能:液化天然气在燃烧时产生较少的污染物和温室气体。
与其他燃料相比,它的燃烧效率更高,并且能够减少大气污染。
5. 可燃性:液化天然气是易燃物质,能够快速燃烧并释放大量热能。
因此,在处理和运输液化天然气时,必须采取严格的安全措施。
6. 成分:液化天然气主要由甲烷组成,但还可能含有少量的乙烷、丙烷和丁烷等其他气体。
这些成分的比例可以根据天然气来源和处理过程的不同而有所变化。
以上是液化天然气的一些主要理化性质。
了解这些性质有助于更好地理解和管理液化天然气的生产、储存和运输过程。
LNG简介
LNG简介一、液化天然气基本特性液化天然气(liquefied natural gas)简称LNG,是以甲烷为主要组分的低温液态混合物,其体积约为气态时的1/625,具有以下优点:1.天然气液化后便于进行经济可靠的运输。
用专门的槽车、火车或轮船将LNG运输到销售地,方便灵活,适应性强。
2. 储存效率高、占地少、投资省。
3.有利于城市燃气负荷的调节,生产过程释放出的冷量可以作冷藏、冷冻、温差发电等。
4.LNG可用作优质的车用燃料。
与燃油汽车相比,具有抗爆性好、燃烧完全、排气污染少;实践证明采用LNG作为汽车燃料,具有发动机寿命长、可有效降低运行成本等优点。
LNG燃点650℃,比汽油高230℃;气态时比空气轻,泄露后立即挥发飘散,不易引起自燃爆炸。
5.有利于保护环境,减少城市污染。
属于国家重点扶持的新兴产业。
二、国外LNG产业状况1.国外LNG贸易液化天然气是天然气资源应用的一种重要形式,自二十世纪80年代起,LNG贸易年均增长率为8%,是世界发展最快的燃料之一。
2000年,世界LNG贸易增长率为10.1%,达1369.6×108m3,占国际天然气贸易总量的26%,占全球天然气消费总量的5.7%。
日本LNG进口占世界进口总量的53%,达725×108m3,是世界最大的LNG进口国;印尼仍是全球最大的LNG出口国,占世界LNG出口总量26%。
亚洲仍然是世界LNG最主要的进出口地区,中东和非洲的出口份额仍在不断增长。
2.国外LNG产量目前,世界上共有12个国家64条生产线生产出口液化天然气,年生产能力1.26×108t。
LNG主要产地分布在俄罗斯、印度尼西亚、马来西亚、澳大利亚、阿尔及利亚、文莱等地,消费国主要是日本、法国、西班牙、美国、韩国和我国台湾省等。
LNG自六十年代开始应用以来,年产量平均以20%的速度持续增加,进入90年代后,由于供需基本平衡,海湾战争等因素影响,LNG每年以6~8%的速度递增,这个速度仍高于同期其它能源的增长速度。
LNG液化天然气基本知识word版本
LNG站控系统
LNG储罐及车载钢瓶
LNG储罐 有效容积5~150m3 最大工作压力0.7~1.6MPa 立式/卧式 真空粉末/高真空多层缠绕
车载钢瓶 有效容积300L/400L 最大工作压力1.6MPa 分带回气接口型和无回气接口型
LNG潜液泵
技术参数: 输送介质:LNG 流量:340L/min 最大扬程:250m 进口压力:0.6MPa 电机功率:约11KW 转速:1500~6000r/min 所需进口净正压头:0.9m
LNG(液化天然气)应用 基本知识
第一部分
LNG基本知识
什么是LNG
LNG(Liquefied Natural Gas),即液化天然气的英文缩写 。天然气是在气田中自然开采出来的可燃气体,主要成分 由甲烷组成。LNG是通过在常压下气态的天然气冷却至162℃,使之凝结成液体。天然气液化后可以大大节约储 运空间和成本,而且具有热值大、性能高等特点。
撬装LNG加气站设计-双加气机
双加气机加气撬设备图解
2万方每天加气站布局
4万方每天加气站布局
8万方每天加气站布局
第三部分
LNG/LCNG加气站介绍
LNG/LCNG加注站是利用LNG作为气源的一种多功能加 气站,可同时提供LNG和CNG两种车用替代燃料,即除 了可以给LNG改装车充装液态LNG,完成对小容积LNG 运输设备的充装外,同时还可以对各种CNG改装车充 装气态CNG,给大容量的CNG专用运输半挂车充气, 兼有CNG加气母站,CNG加气站,LNG加注站的功能。 工作时,潜液泵将站内储罐中的LNG增压后通过加液 机加入车载储罐中实现LNG的加注。高压柱塞泵将站 内储罐中的LNG直接增压到250bar后通过空温式汽化 器汽化为CNG,再通过CNG售气机为NGV车辆加气,也 可通过加气柱为CNG子站拖车加气。
[整理]GB-T4-液化天然气的一般特性.
GB-T 19204-2003 液化天然气的一般特性前言本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。
本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。
根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。
1 范围本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。
本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。
本标准还可供设计和操作LNG设施的工作人员参考。
2下列文件中的条款通过本标准的引用而成为本标准的条款。
液化天然气MSDS
液化天然气MSDS1. 标识信息- 产品名称: 液化天然气- 常用缩写: LNG- 危险标识:- 压力高,有爆炸危险- 极冷,有冷凝和冻结危险- 密切关注的危害:- 高压引起的爆炸危险- 冷凝和冻结导致的细胞和组织损伤2. 成分信息- 主要成分: 甲烷 (CH4)- 含量: ≥90%3. 物理性质- 外观: 无色无味的液体- 沸点: -162°C- 密度: 0.42 g/cm³- 蒸气压力: 2-5 bar (20-50 °C)- 燃烧性质: 易燃- 自燃温度: 530°C4. 危险性和安全信息- 高压危险:- 液化天然气存储在高压中,破裂或泄露可能引发爆炸。
- 必须采取适当的措施来防止破裂或泄露,并确保正确的操作和维护。
- 极冷危险:- 液化天然气非常冷,接触可能导致冷凝和冻结。
- 必须使用保护手套、眼镜和面罩等个人防护设备。
- 干燥区域可能形成滑倒或摔倒的表面。
5. 急救措施- 气道刺激:- 若意外吸入液化天然气气体,请立即将患者移到新鲜空气处。
- 如有呼吸困难,请立即寻求医疗帮助。
- 联络眼睛:- 如液化天然气溅入眼睛,请用清水冲洗至少15分钟。
- 立即就医检查。
- 皮肤接触:- 如液化天然气接触皮肤,请立即用水冲洗至少15分钟。
- 如有不适,请就医检查。
以上是液化天然气MSDS的简要内容。
请在使用液化天然气时谨慎遵守安全操作规程,以确保人身安全和环境保护。
LNG特性
1、LNG槽车技术参数
名称 主要技术参数 容器类别 单位 指标(参数) 内筒 三类 外筒 备注
最高工作压力
设计压力 计算压力 罐 气压试验压力 致密性检验 安全阀开启压力 体 设计温度 工作温度 腐蚀余量 充装介质 绝热形式 ℃ ℃ MPa
0.7
0.77 0.87 0.89* 氦检漏 0.75 -196 -162 0 LNG
流程简介:
充装卸液系统:
V-3增压器 液相阀 V-1底部进液阀
V-11气体排放阀
V-7残液 排放阀
V-7残液 排放阀
V-2顶部进液阀 CZ-3增压器 液相接口 CZ-1液相接口 盲法兰
CZ-2气相接口
流程简介:
增压减压系统:
增压是液体由X-3紧急切断阀3、V-3增压 器液相阀、CZ-3增压器液相接口外接增压器 从CZ-2气相接口、V-11气体排放阀、X-2紧急 切断阀2回槽车.这个过程是液体经过气温加热 后变成气体回到槽车逐步压缩,压力增加。 当压力高时可以打开V-12超压排放阀进行 排放压力。
流程简介:
紧急控制系统:
X-1紧急切断阀1
X-3紧急切断阀3
X-2紧急切断阀2 HC两位三通阀
一、液化天然气的基本概况
液化天然气的基本特性
天然气的含水量 :天然气在地层里长期与水接触, 一部分天然气溶解于水中,一些水蒸气也进入天然 气。所以,从地下气藏中开采出来的天然气,总是 含有水汽。通常所说的天然气含气量,是指天然气 中水汽的含量。 天然气的强爆性:天然气与空气混合,遇到火原 时,可以发生燃烧或爆炸。爆炸是一种剧烈的燃烧, 与之相区别的就是稳定燃烧。天然气在空气中含量 达到 5%~15%时,一遇明火或高温物体;甚至开电 灯所产生的电火花,都可引起门窗紧闭的房间发生 爆炸,其威力较大。
天然气理化特性表和液化天然气理化特性表
特别警 示
极易燃气体。
理
化
特
性
无色、无臭、无味气体。微溶于水,溶于醇、乙醚等有机溶剂。分子量16.04,熔点-182.5℃,沸点-161.5℃,气体密度0.7163g/L,相对蒸气密度(空气=1)0.6,相对密度(水=1)0.42(-164℃),临界压力4.59MPa,临界温度-82.6℃,饱和蒸气压53.32kPa(-168.8℃),爆炸极限5.0%~16%(体积比),自燃温度537℃,最小点火能0.28mJ,最大爆炸压力0.717MPa。
毒性:LNG和天然气是无毒的。
气味:无气味。
组分
LNG是以甲烷为主要成分的烃类混合物,其中含有通常存在于天然气中少量的乙烷、丙烷、氮等其它组分。
物理性质
LNG作为一种沸腾液体大量的储存于绝热储罐中,任何传导至储罐中的热量都会导致一些液体蒸发,一般情况下,蒸发气包括20%的氮,80%的甲烷和微量乙烷。
液化天然气理化特性表
理
化
特
性
相对分子量(kg/kmol):16.41 沸点温度/℃:-162.6
密度/(kg/m3)131.6
0℃t 101.325Pa条件下单位体积和液体生成的气体体积/(m3/m3):590
0℃t 101.325Pa条件下单位质量和液体生成的气体体积/(m3/103kg):1.367
密度
LNG的密度取决于其组分,通常在430kg/m3~470kg/m3之间。
温度
LNG的沸腾温度取决于其组分,在大气压力下通常在-166℃~-157℃之间。
主要用途:主要用作燃料和用于炭黑、氢、乙炔、甲醛等燃烧和爆炸危险性】
极易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸危险。
天然气危险特性及安全性能
天然气危险特性及安全性能
加气站所储存的危险化学品主要是压缩天然气,其理化性质及危险特性。
1
14公斤TNT
沸点:-162℃闪点:-190℃
自燃点:340℃爆炸极限:5%~15%
最易引燃浓度:7.3%产生最大爆炸压力的浓度:9.8%
最大爆炸压力:7Kg/平方厘米最小引燃能量:0.28毫焦
燃烧热值:8300千卡/立方米灭火剂:干粉、雾状水、泡沫、CO2
2
LPG、3、重大危险源辨识结果
本站储存区的天然气为易燃气体,危险源是能量/危险物质集中的核心,是能量传出来或爆发的地方。
通常危险源拥有的能量或物质越多,则事故时可能意外释放的量也多,亦是可能导致事故发生的潜在的不安全因素。
根据《危险化学品重大危险源辨识》GB18218-2009中的规定,对于某种或某类危险物质规定的数量,若单元中的物质数量等于或超过该数量,则该单元定为重大危险源。
根据《危险化学品重大危险源辨识》GB18218-2009中“易燃物质名称及临界量”的规定,压缩天然气的临界量是50吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natura l gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
CEN前言本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。
本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。
根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。
1 范围本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。
本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。
本标准还可供设计和操作LNG设施的工作人员参考。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其岁后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
EN 1473 液化天然气装置和设备,陆上装置设计3 术语和定义下列术语和定义适用于本标准液化天然气liquefied natrual gas一种在液态状况下的无色流体,主要由甲烷组成,组分可能含有少量乙烷,丙烷、氮或通常存在于天然气中的其他组分。
4 缩略语本标准采用如下缩略语——LNG liguefied naural gas,液化天然气——RPT rapid phase tuansition 快速相变——BLEVE boiling liquid exanding vapour explosion 沸腾液体膨胀蒸发爆炸——SEP surface emissive pewer ,表面辐射功率。
5 LNG的一般特性5. 1 引言所有与处理LBG有关的人员,不但应熟悉液态LNG的特性,而且应熟悉其产生气体的提醒。
在处理LNG时潜在的危险主要来源于其3个重要性质。
a) LNG的温度极低。
其沸点在大气压力下约为-160℃,并与其组分有关,在这一温度条件下,其蒸发气密度高于周围空气的密度(见表1中的实例);b) 极少量的LNG液体可以转变为很大体积的气体。
1个体积的LNG可以转变为约600个体积的气体(见表1中的实例);c) 类似于其他气态烃类化合物,天然气是易燃的。
在大气环境下,与空气混合时,其体积约占5%一15%的情况下就是可燃的。
5.2 LNG的性质5.2.1 组成LNG是以甲烷为主要组分的烃类混合物,其中含有通常存在于天然气中少量的乙烷、丙烷、氮等其他组分。
甲烷及其他天然气组分的物理学和热力学性质可以在有关的参考书(参见附录A)和热力学计算手册中查到。
本标准所涉及的LNG,甲烷的含量应高于75%,氮的含量应低于5%。
虽然LNG的主要组分是甲烷,但是不能以纯粹的甲烷去推断LNG的理化性质。
分析LNG的组分时,应该特别注意的是要采取有代表性的样品,避免因蒸馏效应产生不真实的分析结果。
最常用的分析方法是分析一小股连续蒸发的生成物,分析中使用一种专门设计的装置以便能提供未经分馏的液体的具有代表性的气态样品。
另一种方法是在产生主要生成物的蒸馏器出口处提取样品。
该样品可用常规的气相色谱法分析,如ISO 6568或ISO 6974中所述的那些方法。
5.2.2 密度LNG的密度取决于其组分,通常在430 kg/m3—470 kg/m3之间,但是在某些情况下可高达520kg /m3。
密度还是液体温度的函数,其变化梯度约为1.35 kg/m3.℃。
密度可以直接测量,不过通常是用经过气相色谱法分析得到的组分通过计算求得。
推荐使用ISO 6578中确定的计算方法。
注:该方法通常称为Klosek Mckinley法。
5.2.3 温度LNG的沸腾温度取决于其组分,在大气压力下通常在一166℃到一157~C之间。
沸腾温度随蒸气压力的变化梯度约为1.25×10-4℃/Pa。
LNG的温度通常用ISO 8310中确定的铜/铜镍热电偶或铂电阻温度计测量。
5.2.4 LNG的实例表1列示出3种LNG典型实例,并显示出随组分不同的性质变化。
5.3 LNG的蒸发5.3.1 蒸发气的物理性质LNG作为一种沸腾液体大量的储存于绝热储罐中。
任何传导至储罐中的热量都会导致一些液体蒸发为气体,这种气体称为蒸发气。
其组分与液体的组分有关。
一般情况下,蒸发气包括20%的氮,80%的甲烷和微量的乙烷。
其含氮量是液体LNG中含氮量的20倍。
当LNG蒸发时,氮和甲烷首先从液体中气化,剩余的液体中较高相对分子质量的烃类组分增大。
对于蒸发气体,不论是温度低于-113℃的纯甲烷,还是温度低于-85℃含20%氮的甲烷,它们都比周围的空气重。
在标准条件下,这些蒸发气体的密度大约是空气密度的0.6倍。
5.3.2 闪蒸(flash)如同任何一种液体,当LNG已有的压力降至其沸点压力以下时,例如经过阀门后,部分液体蒸发,而液体温度也将降到此时压力下的新沸点,此即为闪蒸。
由于LNG为多组分的混合物,闪蒸气体的组分与剩余液体的组分不一样,其原因与上面5.3.1节中所述的原因类似。
作为指导性数据,在压力为1×105Pa~2×105Pa时的沸腾温度条件下,压力每下降l×l03Pa,1 m3的液体产生大约0.4 kg的气体。
较精确地计算闪蒸如LNG类多组分液体所产生的气体和剩余液体的数量及组分都是复杂的。
应用有效的热力学或装置模拟的软件包,结合适当的数据库,可以在计算机上进行闪蒸计算。
5.4 LNG的溢出(spillage of LNG)5.4.1 LNG溢出物的特征(characteristics of LNG spills)当LNG倾倒至地面上时(例如事故溢出),最初会猛烈沸腾,然后蒸发速率将迅速衰减至一个固定值,该值取决于地面的热性质和周围空气供热情况。
如表2所示,如果溢出发生在热绝缘的表面,则这一速率将极大地降低。
表中的数据是根据实验结果确定的。
表2当溢出发生时,少量液体能产生大量气体,通常条件下1个体积的液体将产生600个体积的气体(见表1)。
当溢出发生在水上时,水中的对流非常强烈,足以使所涉及范围内的蒸发速率保持不变。
LNG的溢出范围将不断扩展,直到气体的蒸发总量等于泄漏产生的液态气体总量。
5.4.2 气体云团的膨胀和扩散(expansion and dispersion of gas clouds)最初,蒸发气体的温度几乎与LNG的温度一样,其密度比周围空气的密度大。
这种气体首先沿地面上的一个层面流动,直到气体从大气中吸热升温后为止。
当纯甲烷的温度上升到约-113℃,或LNG的温度上升到约-80℃(与组分有关),其密度将比周围空气的密度小。
然而,当气体与空气混合物的温度增加使得其密度比周围空气的密度小时,这种混合物将向上运动。
溢出、蒸气云的膨胀和扩散是复杂的问题,通常用计算机模型来进行预测,只有在这方面有能力的机构才能进行这种预测。
随着溢出,由于大气中的水蒸气的冷凝作用将产生“雾”云。
当这种“雾”云可见时(在日间且没有自然界的雾),此种可见“雾”云可用来显示蒸发气体的运动,并且给出气体与空气混合物可燃性范围的保守指示。
在压力容器或管道发生溢出时,LNG将以喷射流的方式洒到大气中,且同时发生节流(膨胀)和蒸发。
这一过程与空气强烈混合同时发生。
大部分LNG最初作为空气溶胶的形式被包容在气云之中。
这种溶胶最终将与空气进一步混合而蒸发。
5.5 着火和爆炸(1gnition)对于天然气/空气的云团,当天然气的体积浓度为5%-15%时就可以被引燃和引爆。
5.5. 1 池火(pool fires)直径大于10m的着火LNG池,火焰的表面辐射功率(SEP)非常高,并且能够用测得的实际正向辐射通量及所确定的火焰面积来计算。
SEP取决于火池的尺寸、烟的发散情况以及测量方法。
SEP 随着烟尘炭黑的增加而降低。
附录A包括的参考文献可用于确定给定情况的SEP。
5.5.2 压力波的发展和后果(development and consequences of pressure waves)没有约束的天然气云以低速燃烧时,在气体云团中产生小于5×103Pa的低超压。
在拥挤的或受限制的区域(如密集的设备和建筑物),可以产生较高的压力5.6 包容(containment)天然气在常温下不能通过加压液化,实际上,必须将温度降低到约-80℃以下才能在任意压力下液化。
这意味着包容任何数量的LNG,例如在两个阀门之间或无孔容器中,都有可能随着温度的提高使压力增加,直到导致包容系统遭到破坏。