抛物线(附答案
抛物线的简单几何性质有答案
2.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4 ,则C的实轴长为()
A. B.2
C.4D.8
【解析】设C: - =1.
∵抛物线y2=16x的准线为x=-4,联立 - =1和x=-4得A(-4, ),B(-4,- ),
∴|AB|=2 =4 ,∴a=2,∴2a=4.
【解析】由抛物线y2=8x的焦点为(2,0),得直线的方程为y=x-2,代入y2=8x,得(x-2)2=8x,即x2-12x+4=0,∴x1+x2=12,弦长=x1+x2+p=12+4=16.
【答案】16
4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.
这时,直线l与抛物线只有一个公共点 .
(2)当k≠0时,方程①的判别式为
Δ=-16(2k2+k-1).
①由Δ=0,即2k2+k-1=0,
解得k=-1或k= .
于是,当k=-1或k= 时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l与抛物线只有一个公共点.
②当Δ>0,即2k2+k-1<0,解得-1<k< .
(2)当a=0时,方程只有一解x=- ,这时直线与抛物线的对称轴平行或重合.
2.直线与抛物线相切和直线与抛物线公共点的个数的关系:直线与抛物线相切时,只有一个公共点,但是不能把直线与抛物线有且只有一个公共点统称为相切,这是因为平行于抛物线的对称轴的直线与抛物线只有一个公共点,而这时抛物线与直线是相交的.
[小组合作型]
抛物线的几何性质
(1)抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为________.
高中抛物线试题及答案
高中抛物线试题及答案一、选择题1. 抛物线的标准方程为 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。
下列哪个选项不是抛物线的标准形式?A. \( y = 3x^2 - 4x + 5 \)B. \( y = -2x^2 + 3 \)C. \( x = 4y^2 - 6y + 7 \)D. \( y = 0 \)答案:D2. 对于抛物线 \( y = ax^2 + bx + c \),如果 \( a > 0 \),抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 抛物线 \( y = x^2 \) 的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)答案:B二、填空题4. 抛物线 \( y = 2x^2 - 4x + 3 \) 的顶点坐标是 _________ 。
答案:(1, 1)5. 抛物线 \( y = -3x^2 + 6x - 5 \) 的对称轴方程是 _________ 。
答案:x = 1三、解答题6. 已知抛物线 \( y = ax^2 + bx + c \) 经过点 (1, 2) 和 (-1, 6),求抛物线的方程。
解:将点 (1, 2) 代入方程得 \( 2 = a(1)^2 + b(1) + c \),即\( a + b + c = 2 \)。
将点 (-1, 6) 代入方程得 \( 6 = a(-1)^2 + b(-1) + c \),即\( a - b + c = 6 \)。
解得 \( b = -2 \),\( a + c = 4 \)。
假设 \( a = 1 \),则 \( c = 3 \),抛物线方程为 \( y = x^2- 2x + 3 \)。
7. 已知抛物线 \( y = x^2 + 4x + 5 \),求其焦点坐标。
高考数学专题《抛物线》习题含答案解析
专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
抛物线专题(附答案)
抛物线专题考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换1.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为32. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程题型:求抛物线的标准方程3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p =, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p = ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.4.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证6.设A 、B 为抛物线px y22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置 [解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kx y 22解出A 点坐标为)2,2(2k p k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.已知点,直线,动点到点的距离等于它到直线的距离.(Ⅰ)求点的轨迹的方程;(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?【答案】(1);(2)即【解析】(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程,或根据定义来求抛物线方程.(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,求出的值.试题解析:(Ⅰ)因点到点的距离等于它到直线的距离,所以点的轨迹是以为焦点、直线为准线的抛物线,其方程为.(Ⅱ)解法一:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.①当直线的斜率不存在时,不合题意.②当直线的斜率存在时,设直线的方程为,联立方程组,消去,得,(*)∴,解得.此时,方程(*)为,其判别式大于零,∴存在满足题设的直线且直线的方程为:即.解法二:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.∵在轨迹上,∴有,将,得.当时,弦的中点不是,不合题意,∴,即直线的斜率,注意到点在曲线的张口内(或:经检验,直线与轨迹相交)∴存在满足题设的直线且直线的方程为:即.【考点】(1)抛物线的标准方程;(2)直线与抛物线的综合问题.2.如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的标准方程及其准线方程;(2)当直线与的斜率存在且倾斜角互补时,求的值及直线的斜率.【答案】(1)所求抛物线的方程是,准线方程是.(2).且由①-②得直线AB的斜率为-1.【解析】(1)设出抛物线的方程,把点P代入抛物线求得p,即求出抛物线的方程,进而求得抛物线的准线方程;(2)设直线的斜率为,直线的斜率为,则可分别表示、,根据倾斜角互补可得,进而得出与之间的等式关系,最后把点A、B代入抛物线的方程并将两式相减后即可求得直线AB的斜率.试题解析:(1)由已知条件,可设抛物线的方程为.因为点P(1,2)在抛物线上,所以,解得.故所求抛物线的方程是,准线方程是.(2)设直线的斜率为,直线的斜率为,则,.因为与的斜率存在且倾斜角互补,所以.又由,均在抛物线上,得①②所以,所以.且由①-②得直线AB的斜率为-1.【考点】抛物线的应用.3.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.4.已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.(1)求的值;(2)如图所示,过定点(2,0)且互相垂直的两条直线、分别与该抛物线分别交于、、、四点.(i)求四边形面积的最小值;(ii)设线段、的中点分别为、两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1)(2)(i)四边形面积的最小值是48(ii)【解析】(1)直接利用抛物线的定义(2)(i)S四边形ABCD,,利用弦长公式,以及基本不等式,二次函数在闭区间上的最值问题的解法求解(ii)恒过定点问题的常规解法试题解析:(1)由已知∴(2)(i)由题意可设直线的方程为(),代入得设则,∴6分同理可得 7分S四边形ABCD8分设则∴S四边形ABCD∵函数在上是增函数∴S四边形ABCD ,当且仅当即即时取等号∴四边形面积的最小值是48. 9分(ii)由①得∴∴∴, 11分同理得 12分∴直线的方程可表示为即当时得∴直线过定点(4,0). 14分注:第(2)中的第(i)问:S四边形ABCD(当且仅当时取等号)也可.【考点】本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,弦长公式,基本不等式,二次函数在闭区间上的最值问题等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.5.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.6.抛物线的准线方程是()A.B.C.D.【答案】C【解析】由抛物线方程可知,,焦点在轴正半轴,所以其准线方程为。
高三数学抛物线试题答案及解析
高三数学抛物线试题答案及解析1.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为__________.【答案】.【解析】抛物线的焦点坐标为(0,2),所以双曲线的焦点在y轴上且c=2,所以双曲线的方程为,即a2=n>0,b2=-m>0,所以a=,又e=,解得n=1,所以b2=c2-a2=4-1=3,即-m=3,m=-3,所以双曲线的方程为,故答案为:.【考点】1.抛物线的简单性质;2.双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____ 。
【答案】2【解析】由题意可得,抛物线的焦点为,准线为.,为AB的中点.直线方程为,由题意可得,故由中点公式可得,把点B的坐标代入抛物线可得,解得.【考点】直线与抛物线的位置关系4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.【答案】(1)-y2=1(2)(-1,-)∪(,1)【解析】(1)设双曲线C的方程为-=1(a>0,b>0).由已知得a=,c=2,再由c2=a2+b2得b2=1,所以双曲线C的方程为-y2=1.(2)将y=kx+代入-y2=1中,整理得(1-3k2)x2-6kx-9=0,由题意得,故k2≠且k2<1①.设A(xA ,yA),B(xB,yB),则xA+xB=,xAxB=,由·>2得xA xB+yAyB>2,x A xB+yAyB=xAxB+(kxA+)(kxB+)=(k2+1)xAxB+k(xA+xB)+2=(k2+1)·+k·+2=,于是>2,即>0,解得<k2<3②.由①②得<k2<1,所以k的取值范围为(-1,-)∪(,1).5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.已知F是抛物线的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.【答案】C【解析】过A,B及线段AB的中点C向抛物线的准线作垂线,垂足分别为M,N,Q,CQ交y轴于T,由抛物线的定义知|AM|+|BN|=|AF|+|BF|=3,因为CQ是直角梯形AMNB的中位线所以CQ|=(|AM|+|BN)=,所以|CT|=|CQ|-|TQ|=-=7.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.8.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.(1)若直线PQ过定点,求点A的坐标;(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.【答案】(1),(2)一个【解析】(1)确定抛物线标准方程只需一个独立条件,本题条件为已知通径长所以抛物线的方程为.直线过定点问题,实际是一个等式恒成立问题.解决问题的核心是建立变量的一个等式.可以考虑将直线的斜率列为变量,为避开讨论,可设的方程为,与联立消得,则,设点坐标为,则有,代入化简得:因此,点坐标为,(2)若三角形APQ为等腰直角三角形,则的中点与点A连线垂直于.先求出的中点坐标为,再讨论方程解的个数,这就转化为研究函数增减性,并利用零点存在定理判断零点有且只有一个.试题解析:(1)设抛物线的方程为,依题意,,则所求抛物线的方程为. (2分)设直线的方程为,点、的坐标分别为.由,消得.由,得,,.∵,∴.设点坐标为,则有.,,∴或.∴或, ∵恒成立. ∴.又直线过定点,即,代入上式得注意到上式对任意都成立,故有,从而点坐标为. (8分)(2)假设存在以为底边的等腰直角三角形,由第(1)问可知,将用代换得直线的方程为.设,由消,得.∴,.∵的中点坐标为,即,∵,∴的中点坐标为.由已知得,即.设,则,在上是增函数.又,,在内有一个零点.函数在上有且只有一个零点,所以满足条件的等腰直角三角形有且只有一个. (12分)【考点】直线与抛物线关系,零点存在定理9.在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则()A.9B.C.D.【答案】A【解析】由题意得,且.令,,则,所以,且,由此可解得.由抛物线的方程知焦点为,因此设直线的方程为,代入抛物线方程,得,解得或,所以由题意知,.由图形特征根据三角形相似易知.【考点】1、直线的斜率;2、直线方程;3、直线与抛物线的位置关系.10.抛物线y2=-8x的准线方程是________.【答案】x=2【解析】∵2p=8,∴p=4,故所求准线方程为x=2.11.下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.【答案】2【解析】设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,即x=±,所以水面宽为2.12.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y).若点M到该抛物线焦点的距离为3,则|OM|等于()A.2B.2C.4D.2【答案】B【解析】由题意设抛物线方程为y2=2px(p>0),则M到焦点的距离为xM+=2+=3,∴p=2,∴y2=4x. ∴=4×2,∴|OM|===2.故选B.13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.【答案】2【解析】设A(x0,y),由抛物线定义知x+1=2,∴x=1,则直线AB⊥x轴,∴|BF|=|AF|=2.14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于()(A) (B) (C) (D)2【答案】D【解析】法一设直线方程为y=k(x-2),A(x1,y1)、B(x2,y2),由得k2x2-4(k2+2)x+4k2=0,∴x1+x2=,x 1x2=4,由·=0,得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,代入整理得k2-4k+4=0,解得k=2.故选D.法二如图所示,设F为焦点,取AB中点P,过A、B分别作准线的垂线,垂足分别为G、H,连接MF,MP,由·=0,知MA⊥MB,则|MP|=|AB|=(|AG|+|BH|),所以MP为直角梯形BHGA的中位线,所以MP∥AG∥BH,所以∠GAM=∠AMP=∠MAP,又|AG|=|AF|,|AM|=|AM|,所以△AMG≌△AMF,所以∠AFM=∠AGM=90°,则MF⊥AB,所以k=-=2.15.已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是() A.3B.4C.5D.6【答案】B【解析】圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min=-1=4.故选B.16.已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为.【答案】x-2y+4=0【解析】点A在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF的平分线所在的直线就是线段MF的垂直平分线,kMF==-2,所以∠MAF的平分线所在的直线方程为y-4=(x-4),即x-2y+4=0.17.设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞)B.(4,+∞) C.(0,2)D.(0,4)【答案】A【解析】∵(x0,y)为抛物线C:y2=8x上一点,∴x≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x>2.18.过抛物线y2=2px(p>0)上一定点P(x0,y)(y>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为.【答案】-2【解析】设直线PA的斜率为kPA ,PB的斜率为kPB,由=2px1,=2px,得kPA==,同理kPB=,由于PA与PB的斜率存在且倾斜角互补,因此=-,即y1+y2=-2y(y>0),那么=-2.19.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=()A.B.1C.2D.3【答案】C【解析】由已知(,0)在圆x2+y2+2x-3=0上,所以有+2×-3=0,即p2+4p-12=0,解得p=2或p=-6(舍去).20.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.21.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值.(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(1) b=-1 (2) (x-2)2+(y-1)2=4【解析】(1)由得x2-4x-4b=0(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2,所以圆A的方程为(x-2)2+(y-1)2=4.22.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.23.如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.【答案】(1)见解析(2)【解析】(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),则x2-kx-1=0,所以x1+x2=k,x1x2=-1.又·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,∴MA⊥MB.(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.解得或∴A(k1,-1),同理可得B(k2,-1),∴S1=|MA||MB|=|k1k2|.又解得或∴D ,同理可得E . ∴S 2=|MD||ME|=.=λ==≥.故λ的取值范围是.24. 已知抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP|=|PB|,求△FAB 的面积. 【答案】(1) y 2=8x (2) 24【解析】解:(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8, ∴2p =8,∴抛物线方程为y 2=8x. (2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A(x 1,y 1),B(x 2,y 2),且直线l 2与x 轴的交点为M. 由得y 2-8y -8m =0,Δ=64+32m>0,∴m>-2. y 1+y 2=8,y 1y 2=-8m , ∴ x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴l 2:x =y +8,M(8,0).故S △FAB =S △FMB +S △FMA =·|FM|·|y 1-y 2|=3=24.25. 已知抛物线方程为x 2=4y ,过点M (0,m )的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,且x 1x 2=-4,则m 的值为________. 【答案】1【解析】设直线方程为y =kx +m ,代入抛物线方程得x 2-4kx -4m =0,所以x 1x 2=-4m ,所以m =1.26. 抛物线的焦点坐标是( ) A .(2,0) B .(0,2) C .(l ,0) D .(0,1)【答案】D 【解析】因为,所以,因为焦点在的正半轴,所以焦点坐标为即。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.设抛物线焦点为F,点P在此抛物线上且横坐标为4,则|PF|等于【答案】6【解析】因为抛物线焦点为F,点P在此抛物线上且横坐标为4,所以由抛物线焦半径公式得|PF|=x+=4+2=6.【考点】本题主要考查抛物线的定义及几何性质。
点评:简单题,抛物线上的点到焦点的距离与到准线的距离相等。
2.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】解:抛物线,∴p=.设A、B、M到准线y=-的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即 2(2+1 32 )=AA′+BB′=AB,∴AB=,故答案为.3.过抛物线的焦点作倾斜角为的直线,则它被抛物线截得的弦长为 .【答案】16【解析】解:因为设直线方程为y=(x-2)与抛物线方程联立方程组,结合韦达定理,得到弦长公式求解得到为16.或者利用抛物线的定义可知弦长为两个的和加上4得到。
4.抛物线的焦点坐标是()A.(2,0)B.(0,2)C.(1,0)D.(0,1)【答案】D【解析】解:因为根据题意2p=4,焦点在y轴上,因此焦点坐标为(0,1),选D5.抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为, 则的值为 .【答案】1【解析】解:因为抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为,联立方程组得到,所以p=16.设不在轴下方的动点到的距离比到轴的距离大求的轨迹的方程;过做一条直线交轨迹于,两点,过,做切线交于点,再过,做的垂线,垂足为,若,求此时点的坐标.【答案】见解析.【解析】第一问利用设点坐标,结合已知的关系式得到化简得到轨迹方程。
第二问中用直线与抛物线的方程联立所以由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴∴可得到。
……………………6分设N点坐标为(a,b)则…………………………8分由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴,∴,,,∴,…………………………12分即,所以,,∴,∴所求点的坐标为…………………………15分7.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为,则()A.B.C.D.【答案】C.【解析】结合抛物线的对称性可知过抛物线的焦点作直线和,其中有四个交点,那么这四个交点与抛物线的焦点F可构成两个等边三角形.故应选C.8.的焦点坐标为 .【答案】.【解析】抛物线的焦点坐标为.9.设抛物线的准线与x轴的交点为,过点作直线交抛物线于两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交轴于,求证:;(3)若直线的斜率依次取时,线段的垂直平分线与x轴的交点依次为,当时,求的值.【答案】(1)(2)见解析(3)【解析】本试题主要是考查了抛物线方程以及抛物线的性质,以及直线与抛物线的位置关系的综合运用,求解中点轨迹方程。
初中抛物线试题及答案
初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。
A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。
A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。
答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。
答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。
答案:抛物线与x轴的交点坐标为(3, 0)。
2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。
答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。
四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。
求桥拱的跨度。
答案:桥拱的跨度为8米。
2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。
求物体达到最高点时的时间。
答案:物体达到最高点时的时间是2秒。
抛物线讲义(含知识点、例题、变式及答案)
第七节 抛 物 线 2019考纲考题考情1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
2.抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率e =100抛物线焦点弦的6个常用结论设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2。
(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角)。
(3)以弦AB为直径的圆与准线相切。
(4)过焦点垂直于对称轴的弦长等于2p(通径)。
(5)S△AOB=p22sinθ(θ为AB的倾斜角).(6)1|AF|+1|BF|为定值2p.考点一抛物线的定义及应用【例1】(1)已知抛物线x2=4y上一点A纵坐标为4,则点A到抛物线焦点的距离为()A.10B.4C.5D.15(2)已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l 于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1C.2 D.4解析(1)抛物线x2=4y的准线方程为y=-1,点A到准线的距离为5,根据抛物线定义可知点A到焦点的距离为5。
故选C。
(2)因为M,N分别是PQ,PF的中点,所以MN∥FQ,且PQ∥x轴。
又∠NRF=60°,所以∠FQP=60°。
由抛物线定义知|PQ|=|PF|,所以△FQP为正三角形。
【新高考数学】抛物线考点精讲(含答案解析)
4.若点 A 为抛物线 y2 4x 上一点, F 是抛物线的焦点,|AF | 6 ,点 P 为直线 x 1 上的动点,则
| PA | | PF | 的最小值为 。
【答案】 2 21
【解析】由抛物线的定义得:
|AF |
xA
p 2
xA 1 6 , xA
5,
代入
y2
4x
得:
y
2 A
20 ,不妨设
上有一动点 N,则 | PA | | PN | 最小值为
。
【答案】4
【解析】设抛物线 C 的焦点为 F ,则 F (0,3) ,因为直线 l : y 3 为抛物线的准线,所以 | PA || PF | ,所
以 | PA | | PN | | PF | | PN | | FN | | FM | 1 32 42 1 4 ,当且仅当 N 为线段 FM 与圆 M 的
。
3.已知第四象限内抛物线
y2
16x
上的一点
M
到
y
轴的距离是该点到抛物线焦点距离的
1 5
,则点
M
的
坐标为
。
4.若点 A 为抛物线 y2 4x 上一点, F 是抛物线的焦点,|AF | 6 ,点 P 为直线 x 1 上的动点,则 | PA | | PF | 的最小值为 。
考点二 抛物线的标准方程
第 5 讲 抛物线
1/9
考点一 抛物线的定义及运用
1.已知抛物线 y2 x 上的点 M 到其焦点的距离为 2,则 M 的横坐标是 。
2.已知抛物线 C : x2 12 y 上一点 P,直线 l : y 3 ,过点 P 作 PA l ,垂足为 A,圆 M : (x 4)2 y2 1
专题九 解析几何第二十八讲 抛物线(含答案)
专题 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程;3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .4. (2019全国III 理21)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C .2D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知||AB =||DE =C 的焦点到准线的距离为 A .2 B .4 C .6 D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( )A B C .6332 D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =POF ∆的面积为( )A .2B .C .D .411.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A .2x y =B .2x y =C .28x y =D .216x y = 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =18.(2014湖南)如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则 .19.(2013北京)若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 20.(2012陕西)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l与C 交于A ,B 两点,||8=AB .(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .x(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。
第07讲 抛物线 (精讲)(含答案解析)
第07讲抛物线(精讲)第07讲抛物线(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:抛物线的定义及其应用题型二:抛物线的标准方程题型三:抛物线的简单几何性质题型四:与抛物线有关的最值问题角度1:利用抛物线定义求最值角度2:利用函数思想求最值第四部分:高考真题感悟知识点一:抛物线的定义1、抛物线的定义:平面内与一个定点F 和一条定直线l (其中定点F 不在定直线l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2、抛物线的数学表达式:{|||}M MF d =(d 为点M 到准线l 的距离).知识点二:抛物线的标准方程和几何性质标准方程22y px =(0p >)22y px =-(0p >)22x py =(0p >)22x py=-(0p >)图形范0x ≥,R y ∈0x ≤,R y ∈0y ≥,x R ∈0y ≤,x R∈围对称轴x 轴x轴y 轴y 轴焦点坐标(,0)2pF (,0)2p F-(0,)2p F (0,)2p F -准线方程2px =-2p x =2p y =-2p y =顶点坐标(0,0)O 离心率1e =通径长2p知识点三:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴,抛物线上任意一点,则;(2)焦点在轴负半轴,抛物线上任意一点,则;(3)焦点在轴正半轴,抛物线上任意一点,则02p PF y =+;(4)焦点在轴负半轴,抛物线上任意一点,则02pPF y =-+.(2022·湖南衡阳·高二期末)1.抛物线21:4E y x =的焦点到其准线的距离为()A .18B .14C .2D .4(2022·北京平谷·高二期末)2.抛物线22y x =的焦点到其准线的距离是()A .1B .2C .3D .4(2022·北京·清华附中高二阶段练习)3.已知抛物线C :28y x =的焦点为F ,点P 在抛物线上,6PF =,则点P 的横坐标为()A .6B .5C .4D .2(2022·四川省资中县球溪高级中学高二阶段练习(文))4.抛物线21x y a=的准线方程是2y =,则实数a 的值()A .18-B .18C .8D .-8(2022·湖北·模拟预测)5.已知抛物线()220y px p =>,过其焦点F 的直线l 与其交与A 、B 两点,33AF BF ==,其准线方程为___________.题型一:抛物线的定义及其应用典型例题(2022·上海普陀·二模)6.已知点(2,2)M ,直线:10l x y --=,若动点P 到l 的距离等于PM ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .直线(2022·福建福州·高二期中)7.在平面直角坐标系xOy 中,动点(),P x y 到直线1x =的距离比它到定点()2,0-的距离小1,则P 的轨迹方程为()A .22y x =B .24y x =C .24y x=-D .28y x=-(2022·全国·高三专题练习)8.动点(),M x y 到y 轴的距离比它到定点()2,0的距离小2,求动点(),M x y 的轨迹方程.同类题型归类练(2022·山东·青岛二中高二阶段练习)9.已知动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,则动圆圆心M 的轨迹方程为()A .212x y =-B .212x y=C .212y x=D .212y x=-(2022·江苏·高二)10.与点()0,3F -和直线30y -=的距离相等的点的轨迹方程是______.(2022·全国·高三专题练习)11.已知动点(),M x y 2=+x ,则动点M 的轨迹方程为_____________.题型二:抛物线的标准方程典型例题(2022·云南曲靖·高二期末)12.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若2,3CB BF AF ==,则此抛物线方程为__________.(2022·全国·高二课时练习)13.求适合下列条件的抛物线的方程.(1)焦点为1,02F ⎛⎫- ⎪⎝⎭,准线方程为12x =;(2)顶点在原点,准线方程为=3y -;(3)顶点在原点,以y 轴为对称轴,过点()1,1M .同类题型归类练(2022·全国·高二课时练习)14.已知点M 到点()2,0A -的距离比点M 到直线3x =的距离小1,求点M 的轨迹方程.(2022·全国·高二课时练习)15.根据下列条件,求抛物线的标准方程、顶点坐标和焦点坐标.(1)准线方程为34x =;(2)准线方程为=2y -;(3)准线方程为2x =.题型三:抛物线的简单几何性质典型例题(2022·河南·驻马店市基础教学研究室高二期末(理))16.已知抛物线C :214y x =,则过抛物线C 的焦点,弦长为整数且不超过2022的直线的条数是()A .4037B .4044C .2019D .2022(2022·湖南永州·高二期末)17.已知抛物线2:4C x y =的焦点为F ,点P 为C 上任意一点,若点()1,3M ,下列结论正确的是()A .PF 的最小值为2B .抛物线C 关于x 轴对称C .过点M 与抛物线C 有一个公共点的直线有且只有一条D .点P 到点M 的距离与到焦点F 距离之和的最小值为4同类题型归类练(2022·全国·高三专题练习)18.点(5,3)M 到抛物线2y ax =的准线的距离为6,那么抛物线的标准方程是()A .2112x y =B .2112x y =或2136x y =-C .2136x y =-D .212x y =或236x y=-(2022·福建·厦门一中高二阶段练习)19.抛物线2x my =上一点()0,3M x -到焦点的距离为5,则实数m 的值为A .8-B .4-C .8D .4(2022·四川·阆中中学高二阶段练习(理))20.已知抛物线()2:20C y px p =>,以()2,0M -为圆心,半径为5的圆与抛物线C 交于,A B 两点,若8AB =,则p =()A .4B .8C .10D .16题型四:与抛物线有关的最值问题角度1:利用抛物线定义求最值典型例题(2022·新疆维吾尔自治区喀什第二中学高二期中(理))21.已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为()A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭(2022·广西南宁·高二期末(理))22.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为()A .3B .4C .5D .112同类题型归类练(2022·全国·高三专题练习)23.已知拋物线24y x =的焦点为F ,定点()2,1A ,设P 为拋物线上的动点,||||PA PF +的最小值为__________,此时点P 坐标为__________.(2022·陕西安康·高二期末(文))24.已知M 为抛物线24y x =上的动点,F 为抛物线的焦点,()3,1P ,则MP MF +的最小值为___________.(2022·全国·高三专题练习)25.已知点P 在抛物线24y x =上,点Q 在圆()2251x y -+=上,则PQ 长度的最小值为___________.(2022·重庆长寿·高二期末)26.已知P 为抛物线24y x =上任意一点,F 为抛物线的焦点,()4,2M 为平面内一定点,则PF PM +的最小值为__________.(2022·上海市青浦高级中学高二阶段练习)27.已知点P 是抛物线24y x =上的一个动点,则点P 到点(的距离与P 到y 轴的距离之和的最小值为___________.(2022·江苏·高二)28.如图所示,已知P 为抛物线()2:20C y px p =>上的一个动点,点()1,1Q ,F 为抛物线C 的焦点,若PF PQ +的最小值为3,则抛物线C 的标准方程为______.角度2:利用函数思想求最值典型例题(2022·四川泸州·高二期末(文))29.动点P 在抛物线24x y =上,则点P 到点()0,4C 的距离的最小值为()AB .CD .12(2022·辽宁·东北育才学校模拟预测)30.已知抛物线21:12C y x =,圆222:(3)1C x y -+=.若点P ,Q 分别在1C ,2C 上运动,且设点(4,0)M ,则||||PM PQ 的最小值为()A .2B .2C .12D (2022·全国·高三专题练习)31.已知抛物线()220y px p =>的焦点坐标为()1,0F ,则抛物线上的动点P 到点()3,0M p 的距离MP 的最小值为()A .2B .4C .D .同类题型归类练(2022·内蒙古·包钢一中一模(文))32.已知圆22:(3)4C x y -+=,点M 在抛物线2:4y x Γ=上运动,过点M 引直线1l ,2l 与圆C 相切,切点分别为P ,Q ,则||PQ 的最小值为()(2022·黑龙江大庆·三模(理))33.已知F 是抛物线22y x =的焦点,A 为抛物线上的动点,点()1,0B -,则当221AB AF +取最大值时,AB 的值为___________.(2022·全国·高二课时练习)34.若抛物线2:2(0)C y px p =>上一点(5,)t 到焦点的距离为6,P 、Q 分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为______.(2022·全国·高考真题(文))35.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .C .3D .(2021·天津·高考真题)36.已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()A BC .2D .3(2021·全国·高考真题)37.抛物线22(0)y px p =>的焦点到直线1y x =+,则p =()A .1B .2C .D .4(2021·全国·高考真题)38.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.(2021·北京·高考真题)39.已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______;MNF 的面积为_______.参考答案:1.C【分析】将抛物线方程化为标准式,即可得到p ,再根据p 的几何意义得解;【详解】解:抛物线21:4E y x =,即24x y =,则24p =,所以2p =,所以抛物线的焦点到其准线的距离为2p =.故选:C 2.A【分析】求出抛物线的焦点坐标与准线方程,即可得解;【详解】解:抛物线22y x =的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,所以焦点到准线的距离11122d ⎛⎫=--= ⎪⎝⎭;故选:A 3.C【分析】根据抛物线的标准方程,确定准线方程,根据抛物线的定义计算可得;【详解】解:设点P 的横坐标为0x ,抛物线28y x =的准线方程为2x =-,点P 在抛物线上,||6PF =,026x ∴+=,04x ∴=.故选:C .4.A【分析】根据准线方程列出方程,求出实数a 的值.【详解】由题意得:124a -=,解得:18a =-.故选:A 5.34x =-【分析】结合题意根据抛物线的定义和梯形中位线分析处理.【详解】设线段AB 中点为D ,则F 为线段BD 中点,过A 、B 、D 、F 分别向抛物线准线作垂线,垂足分别为'A 、B'、'D 、F','3AA =,'1BB =由梯形中位线得'2DD =,3'2FF =,∴准线方程为34x =-故答案为:34x =-.6.C【分析】由抛物线的定义求解即可.【详解】由抛物线的定义(平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线)可知,点P 的轨迹是抛物线.故选:C 7.D【分析】根据抛物线的定义判断轨迹,再由抛物线焦点、准线得到方程即可.【详解】由题意知动点(),P x y 到直线2x =的距离与定点()2,0-的距离相等,由抛物线的定义知,P 的轨迹是以()2,0-为焦点,2x =为准线的抛物线,所以4p =,轨迹方程为28y x =-,故选:D8.()00y x =<或28y x =.【分析】由动点M 到y 轴的距离比它到定点()2,0的距离小2,利用抛物线的定义求解.【详解】解:∵动点M 到y 轴的距离比它到定点()2,0的距离小2,∴动点M 到定点()2,0的距离与它到定直线2x =-的距离相等.∴动点M 到轨迹是以()2,0为焦点,2x =-为准线的抛物线,且4p =.∴抛物线的方程为28y x =,又∵x 轴上点()0,0左侧的点到y 轴的距离比它到()2,0点的距离小2,∴M 点的轨迹方程为()00y x =<②.综上,得动点M 的轨迹方程为()00y x =<或28y x =.9.A【分析】根据动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,可得动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是抛物线,由此易得轨迹方程.【详解】设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知,动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,所以3,2122p p ==,其方程为212.x y =-,故选:A10.212x y=-【分析】由抛物线的定义和方程,计算可得所求轨迹方程.【详解】解:由抛物线的定义可得平面内与点()0,3F -和直线30y -=的距离相等的点的轨迹为抛物线,且()0,3F -为焦点,直线3y =为准线,设抛物线的方程为22(0)x py p =->,可知32p =,解得6p =,所以该抛物线方程是212x y =-,故答案为:212x y=-11.28y x=M 到点()2,0F 的距离,2x +转化为动点M 到直线:l 2x =-的距离,再根据抛物线的定义,即可求出结果.【详解】设()2,0F ,直线:l 2x =-,则动点M 到点F M 到直线:l 2x =-,的距离为2x +2x =+,所以动点M 的轨迹是以()2,0F 为焦点,2x =-为准线的抛物线,其轨迹方程为28y x =.故答案为:28y x=12.23y x=【分析】作⊥AE 准线于E ,BD ⊥准线于D ,设BD a =,由抛物线定义得30BCD ∠= ,结合3AF =求得1a =,进而求出32p =,即可求得抛物线方程.【详解】如图,作⊥AE 准线于E ,BD ⊥准线于D ,设BD a =,由抛物线定义得BD BF a ==,22CB BF a ==,故30BCD ∠= ,在直角三角形ACE 中,因为3AE AF ==,33AC AF FC a =+=+,所以336a +=,从而得1a =,设准线与x 轴交于G ,则1322FG FC ==,所以32p =,因此抛物线方程为23y x =.故答案为:23y x =.13.(1)22y x=-(2)212x y=(3)2x y =【分析】(1)设所求抛物线的标准方程为()220y px p =->,求出p 的值,即可得解;(2)设所求抛物线的标准方程为()220x py p =>,求出p 的值,即可得解;(3)设所求抛物线的标准方程为2x ay =,将点M 的坐标代入抛物线的标准方程,求出a 的值,即可得解.【详解】(1)解:根据题意,可设所求抛物线的标准方程为()220y px p =->,则122p -=-,可得1p =,故所求抛物线的标准方程为22y x =-.(2)解:根据题意,可设所求抛物线的标准方程为()220x py p =>,则32p -=-,可得6p =,故所求抛物线的标准方程为212x y =.(3)解:根据题意,设所求抛物线的标准方程为2x ay =,则211a ⨯=,得1a =,故所求抛物线的标准方程为2x y =.14.28y x=-【分析】分析可知点M 的轨迹是以点A 为焦点,以直线2x =为准线的抛物线,可设该抛物线的方程为()220y px p =->,求出p 的值,即可得解.【详解】解:由题意可知,点M 到点()2,0A -的距离和点M 到直线2x =的距离相等,故点M 的轨迹是以点A 为焦点,以直线2x =为准线的抛物线,设点M 的轨迹方程为()220y px p =->,则22p -=-,解得4p =,故点M 的轨迹方程为28y x =-.15.(1)抛物线方程为23y x =-,顶点坐标为(0,0),焦点坐标为3,04⎛⎫- ⎪⎝⎭(2)抛物线方程为28x y =,顶点坐标为(0,0),焦点坐标为()0,2(3)抛物线方程为28y x =-,顶点坐标为(0,0),焦点坐标为()2,0-【分析】(1)由准线方程可设抛物线的方程为22y px =-,再根据准线方程求出p 即可,(2)由准线方程可设抛物线的方程为22x py =,再根据准线方程求出p 即可,(3)由准线方程可设抛物线的方程为22y px =-,再根据准线方程求出p 即可,(1)由题意设抛物线的方程为22y px =-,因为准线方程为34x =,所以324p =,得32p =,所以抛物线方程为23y x =-,顶点坐标为(0,0),焦点坐标为3,04⎛⎫- ⎪⎝⎭.(2)由题意设抛物线方程为22x py =,因为准线方程为=2y -,所以22p =,得4p =,所以抛物线方程为28x y =,顶点坐标为(0,0),焦点坐标为()0,2.(3)由题意设抛物线方程为22y px =-,因为准线方程为2x =,所以22p =,得4p =,所以抛物线方程为28y x =-,顶点坐标为(0,0),焦点坐标为()2,0-.16.A【分析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解.【详解】∵抛物线C :214y x =,即24x y =,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y 轴的那条弦,则过抛物线C 的焦点,长度最短的弦的长为414⨯=,由抛物线的对称性可得,弦长在5到2022之间的有共有201824036⨯=条,故弦长为整数且不超过2022的直线的条数是403614037+=.故选:A .17.CD【分析】设00(,)P x y ,求出PF 的长,由二次函数性质得最小值判断A ,由抛物线的对称性判断B ,由直线与抛物线的位置关系判断C ,结合抛物线的定义,把PF 转化为P 到准线的距离后可求得题中距离和的最小值判断D .【详解】设00(,)P x y ,则2004x y =,00≥y ,又抛物线的焦点为(0,1)F ,所以00111PF y y ===+=+≥,00y =时,等号成立.所以PF 的最小值是1,A 错;抛物线的焦点在y 轴上,抛物线关于y 轴对称,B 错;易知点M 在抛物线的内部(含有焦点的部分),因此过M 与对称轴平行的直线与抛物线只有一个公共点,其他直线与抛物线都有两个公共点,C 正确;记抛物线的准线为l ,准线方程为1y =-,过P 作PH l ⊥于H ,过M 作MN l ⊥于N ,则PF PH =,PM PF MP PH +=+,所以当,,M P H 三点共线,即H 与N 重合时,PM PF +最小,最小值为314+=.D 正确.故选:CD .18.D【解析】将2y ax =转化为21x y a=,分类讨论0a >和a<0两种情况,利用抛物线性质,列出关于a 的方程求解即可.【详解】将2y ax =转化为21x y a =,当0a >时,抛物线开口向上,准线方程14y a =-,点(5,3)M 到准线的距离为1364a+=,解得112a =,所以抛物线方程为2112y x =,即212x y =;当a<0时,抛物线开口向下,准线方程14y a =-,点(5,3)M 到准线的距离为1364a +=,解得136a =-或112a =(舍去),所以抛物线方程为2136y x =-,即236x y =-.所以抛物线的方程为212x y =或236x y=-故选:D【点睛】易错点睛:本题考查求抛物线的标准方程,解题时要注意,已知抛物线方程,求它的焦点坐标,准线方程等,一定要注意所给方程是不是标准形式,若不是,一定要先转化为标准形式,然后根据标准形式的类型,确定参数p 的值及抛物线的开口方向等,然后给出结论.19.A【分析】根据抛物线的定义及抛物线的几何性质即可求解.【详解】解:因为抛物线2x my =过点()0,3M x -,所以0m <,抛物线2x my =的焦点为0,4m F ⎛⎫ ⎪⎝⎭,由抛物线的定义可知0335224p p m MF y =+=+=-=,解得8m =-.故选:A.20.B【分析】由圆和抛物线的对称性及|AB |的长,可以得到点A ,B 的纵坐标,代入抛物线方程得到其横坐标关于p 的函数表达式,再代入圆的方程求得p 的值.【详解】以()2,0M -为圆心,半径为5的圆的方程为()22225x y ++=,由抛物线()2:20C y px p =>,得到抛物线关于x 轴对称,又∵上面的圆的圆心在x 轴上,∴圆的图形也关于x 轴对称,∴它们的交点A ,B 关于x 轴对称,因为|AB |=8,∴A ,B 点的纵坐标的绝对值都是4,∵它们在抛物线上,于是A 点的横坐标的值2482p p=,不妨设A 在x 轴上方,则A 点的坐标为8,4p ⎛⎫ ⎪⎝⎭,又∵A 在圆上,∴2282425p ⎛⎫++= ⎪⎝⎭,解得8p =,故选:B.【点睛】本题考查抛物线的方程和几何性质,涉及圆的方程和性质,关键是利用抛物线和圆的对称性,结合弦长求得A ,B 的纵坐标,进而得到其横坐标,代入圆的方程求得p 的值.21.D【分析】过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF ME =,当M 在抛物线上移动时,当,,A M E 三点共线时,ME MA +最小,由此即可求出结果.【详解】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把=2y -代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.22.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案.【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m =,解得4m =.记抛物线的准线为l ,作PN l ⊥于N ,作BA l ^于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+= ,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A.23.31,14⎛⎫ ⎪⎝⎭【分析】设点P 在准线上的射影为B ,由抛物线的定义把问题转化为求||||PA PB +的最小值,由图形推断出当H ,P ,A 三点共线时||||PA PB +最小,答案可得.【详解】过点P 作PB 垂直于准线,过A 作AH 垂直于准线,||||||||PA PF PA PB AH +=+ ,||||PA PF +取到最小值时,且为2(1)3--=;点P 与点A 的纵坐标相同,可设点P 为0(x ,1),则2014x =,解得014x =,所以点1(4P ,1).故答案为:3;1,14⎛⎫ ⎪⎝⎭24.4【分析】利用抛物线的定义求解.【详解】解:如图所示:设点M 在准线上的射影为D ,由抛物线的定义知MF MD =,∴要求MP MF +的最小值,即求MP MD +的最小值,当D ,M ,P 三点共线时,MP MD +最小,最小值为()314--=.故答案为:425.3【分析】根据抛物线和圆的对称性,结合圆的性质、两点间距离公式、配方法进行求解即可.【详解】因为抛物线和圆都关于横轴对称,所以不妨设(0)P m m ≥,设圆()2251x y -+=的圆心坐标为:(5,0)A ,半径为1,因此PA =3m =时,min 4PA ==,所以PQ 长度的最小值为413-=,故答案为:326.5【分析】利用抛物线的定义,将PF 转化为P 到准线的距离,再由三点共线求最小值.【详解】由题意,抛物线的准线为=1x -,焦点坐标为(1,0)F ,过点P 向准线作垂线,垂足为A ,则||||P M P M A P P F =++,当,,P M A 共线时,和最小;过点P 向准线作垂线,垂足为B ,则||||||5PA P M P P M F M B +=+≥=,所以最小值为5.故答案为:5.27.1【分析】由抛物线的定义可得11P PM x PM PF MF +=+-≥-,再求出||MF 的值即可.【详解】由抛物线24y x =可知其焦点为()1,0F ,由抛物线的定义可知1P PF x =+,故点P 到点(M 的距离与P 到y 轴的距离之和为1111P PM x PM PF MF +=+-≥-==,即点P 到点(的距离与P 到y 轴的距离之和的最小值为1.故答案为:1.28.28y x =【分析】根据定义将PF PQ +转化为点P 到点Q 和准线的距离之和,由最小值为3可得p ,然后可得抛物线标准方程.【详解】过点P 、Q 分别作准线的垂线,垂直分别为M 、N ,由抛物线定义可知PF PQ PM PQ NQ +=+≥,当P ,M ,Q 三点共线时等号成立所以132p NQ =+=,解得4p =所以抛物线C 的标准方程为28y x =.故答案为:28y x =29.B【分析】设出点P 坐标,用两点间距离公式表达出点P 到点()0,4C 的距离,配方后求出最小值.【详解】设2,4x P x ⎛⎫ ⎪⎝⎭,则()2222214812416x PC x x ⎛⎫=+-=-+ ⎪⎝⎭28x =时,PC 取得最小值,最小值为23故选:B30.A【分析】圆心2(3,0)C 是抛物线的焦点,设(,)P x y ,因此2||4PQ PC r x ≤+=+,这样有22(4)||||4x y PM PQ x -+,变形后利用基本不等式得最小值.【详解】易知2C 即为抛物线1C 的焦点,即2(3,0)C ,设(,)P x y ,∴2||4PQ PC r x ≤+=+∴||||4PM PQ x ≥+当0x >时,上式≥=4x =,即(4,P ±时,取得最小值2故选:A .31.C 【分析】根据题意得抛物线的标准方程为:24y x =,进而设()00,P x y ,得()220420MP x =-+,故MP ≥【详解】解:由题意,抛物线的标准方程为:24y x =,设抛物线上的动点P 的坐标为()00,P x y ,则:2004y x =由()6,0M ,所以()()22222000000612364420MP x y x x x x =-+=-++=-+由00x ≥,所以220MP MP ≥⇒≥即动点P 到点()3,0M p 的距离MP的最小值为故选:C32.C 【分析】利用切线性质,构造PQ 的长度关于CM 的函数关系,再求函数的最小值即可.【详解】圆C 的方程:22(3)4x y -+=,可知PC PM ⊥,CQ MQ ⊥,MC PQ ⊥,||2PC =,故四边形PCQM的面积112222PCMS S PC PM CM PQ ==⋅=⋅,2PC PMPQCM∴==当||CM取最小值时||PQ最小,设(,)M x y,则CM=当1x=时,||CM取最小值为||PQ∴的最小值为故选:C.33【分析】设(,)A x y,应用两点距离公式及抛物线定义得到||AB、||AF关于x的表达式,由2||2||1ABAF+应用基本不等式求最值,注意等号成立时的x值,即可求AB的值.【详解】设(,)A x y,则||AB==,而1||2AF x=+,所以22222||4121311112||121212122AB x x xxAF x x x xx⎛⎫++==++≤+⎪+++++⎝⎭++,当且仅当1x=时等号成立,所以2||2||1ABAF+取最大值时1x=,此时||AB==34.1##1-+【分析】根据抛物线定义有562p+=,即可求参数p,再将问题转化为求圆心(6,0)A到抛物线上点最小距离,结合两点距离公式及二次函数性质即可求PQ 的最小值.【详解】由题设及抛物线定义知:562p +=,可得2p =,故2:4C y x =,而22(6)1x y -+=的圆心为(6,0)A ,半径为1,所以PQ 最小,则,,A Q P 共线且||1PQ AP =-,故只需||AP 最小,令(,)P x y ,则||AP =,且0x ≥,当4x =时,min ||AP =PQ 的最小值为1-.故答案为:135.B【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线=1x -的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==.故选:B 36.A【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bc CD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率c e a==故选:A.37.B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值.【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d ==解得:2p =(6p =-舍去).故选:B.38.32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】抛物线C :22y px =(0p >)的焦点,02p F ⎛⎫ ⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2p P p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2p Q PQ p ∴+∴=-uu u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.39.5【分析】根据焦半径公式可求M 的横坐标,求出纵坐标后可求FMN S .【详解】因为抛物线的方程为24y x =,故2p =且()1,0F .因为6MF =,62M p x +=,解得5M x =,故M y =±,所以()1512FMN S =⨯-⨯ ,故答案为:5;。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.抛物线()的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A.B.1C.D.2【答案】A.【解析】设,连接AF、BF,由抛物线的定义知,,在梯形ABPQ中,;应用余弦定理得,配方得,又因为,所以,得到.所以,即的最大值为,故选A.【考点】抛物线的简单性质.2.准线为的抛物线的标准方程是()A.y2=﹣4x B.y2=﹣8x C.y2=4x D.y2=8x【答案】B【解析】设抛物线方程为,准线方程,解得,抛物线方程【考点】抛物线方程的应用.3.已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2= 20的两条渐近线围成的三角形的面积等于,则抛物线的方程为A.y2=4x B.y2=8x C.x2=4y D.x2=8y【答案】B【解析】抛物线的顶点在原点,焦点在x轴的正半轴上排除C、D,设抛物线的方程为,则抛物线的准线方程为,双曲线的渐进线方程为,由面积为可得,所以,答案选B。
【考点】圆锥曲线的基本性质4.已知抛物线.(1)若直线与抛物线相交于两点,求弦长;(2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点在上且,求点的轨迹方程.【答案】(1);(2)().【解析】(1)这是解析几何中的常规问题,注意设而不求思想方法的使用;(2)求轨迹方程的方法有:直接法、定义法、代入转移法、几何法、参数法等,这里使用的是直接法,直接法的步骤是:建系、设点、列式、坐标化、化简整理、最后是多退少补,特别要注意多退少补.试题解析:(1)由,消去整理得: 2分设,则,所以 6分(注:用其他方法也相应给分)(2)设点的坐标为,由边所在的方程过定点,8分所以, 即() 14分(注:没写扣1分)【考点】1.直线与抛物线;2.求轨迹方程.5.斜率为2的直线L 经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为().A.1B.C.D.【答案】B【解析】设斜率为2且经过抛物线的焦点F的直线L的方程为,联立,得,即;设,中点;则;因为AB的中点到抛物线准线的距离为1,所以,.【考点】直线与抛物线的位置关系.6.已知抛物线方程,则抛物线的焦点坐标为 .【答案】【解析】因为抛物线的焦点坐标为;所以抛物线的焦点坐标为.【考点】抛物线的性质.7.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.8.抛物线的焦点是()A.B.C.D.【答案】D.【解析】由抛物线的方程知其焦点坐标在轴上,且,即,所以抛物线的焦点坐标为.【考点】抛物线的定义.9.已知点M是抛物线上的一点,F为抛物线的焦点,A在圆C:上,则的最小值为__________.【答案】4【解析】抛物线的准线方程为:x=-1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∵A在圆C:,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴=4.【考点】圆与圆锥曲线的综合;考查抛物线的简单性质;考查距离和的最小.10.抛物线的准线方程是,则的值为()A.B.C.8D.【答案】A【解析】首先把抛物线方程转化为标准方程的形式,再根据其准线方程为即可求之.【考点】抛物线的定义.11.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)证明:圆与轴必有公共点;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)1 (2)见解析(3)存在,【解析】(1)由抛物线方程求出焦点坐标,再由中点坐标公式求得FA的中点,由中点在抛物线上求得p的值;(2)联立直线方程和抛物线方程,由直线和抛物线相切求得切点坐标,进一步求得Q的坐标(用含k的代数式表示),求得PQ的中点C的坐标,求出圆心到x轴的距离,求出,由半径的平方与圆心到x轴的距离的平方差的符号判断圆C与x轴的位置关系;(3)法一、假设平面内存在定点M满足条件,设出M的坐标,结合(2)中求得的P,Q的坐标,求出向量的坐标,由恒成立求解点M的坐标.(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得.(2)由(1)得抛物线的方程为,从而抛物线的准线方程为由得方程,由直线与抛物线相切,得且,从而,即,由,解得,∴的中点的坐标为圆心到轴距离,∵所圆与轴总有公共点.(3)假设平面内存在定点满足条件,由抛物线对称性知点在轴上,设点坐标为,由(2)知,∴。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.已知定点在抛物线的内部,为抛物线的焦点,点在抛物线上,的最小值为4,则= .【答案】4【解析】由下图可知:当点Q移动到点M时最小,又因为点所以抛物线的准线方程为,所以即.【考点】抛物线的定义及性质.2.如图,抛物线关于轴对称,它的顶点在坐标原点,点,,均在抛物线上.(Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.【答案】(1)抛物线的方程是, 准线方程是.;(2)1.【解析】(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程;(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,求出的值.试题解析:(I)由已知条件,可设抛物线的方程为因为点在抛物线上,所以,得.故所求抛物线的方程是, 准线方程是.(II)设直线的方程为,即:,代入,消去得:.设,由韦达定理得:,即:.将换成,得,从而得:,直线的斜率.【考点】(1)抛物线的方程;(2)直线与抛物线的综合问题.3.设抛物线的焦点为,经过点的直线交抛物线于、两点,分别过、两点作抛物线的两条切线交于点,则有()A.B.C.D.【答案】A.【解析】设出过点F的直线方程即,联立方程组,化简整理得,设,,则由韦达定理得,.,.由可得,,所以,所以抛物线在A,B两点处的切线的斜率分别为,.所以在点A处的切线方程为,即.同理在点B处的切线方程为.于是解方程组可得,,所以点C的坐标为.所以故答案应选A.【考点】直线与抛物线的位置关系;向量的数量积.4.已知抛物线:与点,过的焦点且斜率为的直线与交于,两点,若,则()A.B.C.D.【答案】D【解析】由题可得抛物线的焦点坐标为,则过的焦点且斜率为的直线方程为,设直线与抛物线的交点坐标分别为,,则由得,则有,,所以得,,又,,因为所以有,即,即,所以,选D【考点】抛物线的概念、向量的运算5.以抛物线上的任意一点为圆心作圆与直线相切,这些圆必过一定点,则这一定点的坐标是()A.B.(2,0)C.(4,0)D.【答案】B【解析】画出如下示意图,可知,抛物线的焦点F坐标为(2,0),准线方程为直线x=-2,根据抛物线的定义,取抛物线上任意一点P,则R=PH=PF,因此所画的圆必过焦点(2,0).【考点】抛物线的定义.6.抛物线y=x2到直线 2x-y=4距离最近的点的坐标是 .【答案】【解析】设与直线平行的直线方程为,将和联立消去并整理可得,即时直线与相切。
抛物线基础题(含答案)
抛物线1.在平面内,“点P 到某定点的距离等于到某定直线的距离”是“点P 的轨迹为抛物线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B2.若动点P 到定点F (-4,0)的距离与到直线x =4的距离相等,则P 点的轨迹是( )A .抛物线B .线段C .直线D .射线答案 A3. 已知动点P 到定点(0,2)的距离和它到直线l :y =-2的距离相等,则点P 的轨迹方程为________。
答案 x 2=8y 4. 已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 C5. 对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为⎝ ⎛⎭⎪⎫0,116C .开口向右,焦点为(1,0)D .开口向右,焦点为⎝ ⎛⎭⎪⎫0,116答案 B6.抛物线y =ax 2(a ≠0)的准线方程是y =2,则a 的值为( )A.18B .-18 C .8 D .-8解析 因为y =ax 2(a ≠0),化为标准方程为x 2=1a y ,其准线方程为y =2,所以2=1-4a,所以a =-18。
故选B 。
答案 B7. 抛物线y =-116x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫-164,0 B .(-4,0) C.⎝ ⎛⎭⎪⎫0,-164 D .(0,-4) 解析 抛物线方程化为x 2=-16y 。
其焦点坐标为(0,-4)。
答案 D8. 抛物线方程为7x +4y 2=0,则焦点坐标为________。
解析 抛物线方程化为y 2=-74x ,所以抛物线开口向左,2p =74,p 2=716,故焦点坐标为⎝ ⎛⎭⎪⎫-716,0。
答案 ⎝ ⎛⎭⎪⎫-716,09.顶点在坐标原点,对称轴为坐标轴,又过点(-2,3)的抛物线方程是( )A .y 2=94xB .x 2=43yC .y 2=-94x 或x 2=-43yD .y 2=-92x 或x 2=43y 答案 D10.已知抛物线y =mx 2(m >0)的焦点与椭圆4y 29+x22=1的一个焦点重合,则m =________。
圆锥曲线之----抛物线专题(附答案)
圆锥曲线之---抛物线专题1. 设抛物线y 2=2x 的焦点为F ,过点M(√3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF|=2,则△BCF 与△ACF 的面积之比S △BCFS△ACF=( )A. 45B. 23C. 47D. 12【答案】A【解析】解:如图过B 作准线l :x =−12的垂线,垂足分别为A 1,B 1, ∵S △BCF S △ACF=|BC||AC|,又∵△B 1BC∽△A 1AC 、 ∴|BC||AC|=|BB 1|AA 1,由拋物线定义|BB 1||AA 1|=|BF||AF|=2|AF|.由|BF|=|BB 1|=2知x B =32,y B =−√3, ∴AB :y −0=√3√3−32(x −√3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF|=|AA 1|=52. 故S △BCFS △ACF=|BF||AF|=252=45.故选:A . 根据S △BCFS△ACF=|BC||AC|,进而根据两三角形相似,推断出|BC||AC|=|BB 1|AA 1,根据抛物线的定义求得|BB 1|AA 1=|BF||AF|,根据|BF|的值求得B 的坐标,进而利用两点式求得直线的方程,把x =y 22代入,即可求得A 的坐标,进而求得|BF||AF|的值,则三角形的面积之比可得.本题主要考查了抛物线的应用,抛物线的简单性质.考查了学生基础知识的综合运用和综合分析问题的能力.2. 已知过抛物线y 2=2px(p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为12√3,则准线l 的方程为( ) A. x =−√2 B. x =−2√2 C. x =−2 D. x =−1 【答案】A【解析】解:设|BF|=m ,|AF|=3m ,则|AB|=4m ,p =32m ,∠BAA 1=60°, ∵四边形AA 1CF 的面积为12√3,∴(32m+3m)×3msin60°2=12√3,∴m =43√2,∴p 2=√2,∴准线l 的方程为x =−√2, 故选:A .设|BF|=m ,|AF|=3m ,则|AB|=4m ,p =32m ,∠BAA 1=60°,利用四边形AA 1CF 的面积为12√3,建立方程,求出m ,即可求出准线l 的方程. 本题考查抛物线的方程与性质,考查四边形面积的计算,正确运用抛物线的定义是关键.3. 已知点P 在抛物线y =x 2上,点Q 在圆(x −4)2+(y +12)2=1上,则|PQ|的最小值为( )A. 3√52−1B. 3√32−1 C. 2√3−1 D. √10−1【答案】A【解析】【分析】设P(t,t 2),求出|PC|2=t 4+2t 2−8t +16+14,构造函数,利用函数的导数求解函数的最小值,由此能求出|PQ|的最小值.本题考查的知识要点:两点间的距离公式的应用,函数的导数的应用,考查圆的方程和抛物线方程的应用,及相关的运算问题. 【解答】解:∵点P 在抛物线y =x 2上,∴设P(t,t 2),∵圆(x −4)2+(y +12)2=1的圆心C(4,−12),半径r =1, ∴|PC|2=(4−t)2+(−12−t 2)2=t 4+2t 2−8t +16+14,令y =|PC|2=t 4+2t 2−8t +16+14,y′=4t 3+4t −8=0,可得t 3+t −2=0,解得t =1,当t <1时,y′<0,当t >1,y′>0,可知函数在t =1时取得最小值,|PC|min 2=454|PQ|的最小值=|PC |min −r =3√52−1.故选:A .4. 已知抛物线C :y 2=4x 的焦点是F ,过点F 的直线与抛物线C 相交于P 、Q 两点,且点Q 在第一象限,若3PF ⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则直线PQ 的斜率是( )A. √33B. 1C. √2D. √3【答案】D【解析】解:过点P ,Q 分别作抛物线的准线l :x =−1的垂线,垂足分别是P 1、Q 1, 由抛物线的定义可知,|Q 1Q|=|QF|,|P 1P|=|FP|,设|PF|=k(k >0),3PF⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则|FQ|=3k ,又过点P 作PR ⊥Q 1Q 于点R , 则在直角△PRQ 中,|RQ|=2k ,|PQ|=4k ,所以∠PQR =π3,所以直线QP 的倾斜角为π3,所以直线PQ 的斜率是√3, 故选:D .过点P ,Q 分别作抛物线的准线l :x =−1的垂线,垂足分别是P 1、Q 1,由抛物线的定义可知,|Q 1Q|=|QF|,|P 1P|=|FP|,设|PF|=k(k >0),则|FQ|=3k ,在直角△PRQ 中求解直线PQ 的倾斜角然后求解斜率.本题考查抛物线的简单性质的应用,考查转化思想以及计算能力.5. 抛物线y 2=2px(p >0)的焦点为F ,其准线与x 轴的交点为N ,过点F 作直线与此抛物线交于A 、B 两点,若NB⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且|AF ⃗⃗⃗⃗⃗ |−|BF ⃗⃗⃗⃗⃗ |=4,则p 的值为( ) A. 2 B. 3 C. 4 D. 5 【答案】A【解析】【分析】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.假设k 存在,设AB 方程为:y =k(x −p2),代入椭圆方程,可得根与系数的关系,由∠NBA =90°,可得|AF|−|BF|=(x 2+p2)−(x 1+p2)=2p ,再利用焦点弦长公式即可求得p 的值. 【解答】解:抛物线y 2=2px(p >0)的焦点为F(p 2,0), 设两交点为A(x 2,y 2),B(x 1,y 1),当直线AB 的斜率不存在时,NF ⊥AB ,不符合题意; 当直线AB 的斜率存在时,设AB 方程为:y =k(x −p2), {y =k(x −p2)y 2=2px,整理得k 2x 2−(k 2+2)px +k 2p 24=0, ∵NB⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,则∠NBA =90°,∴NB ⃗⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =0. ∴(x 1−p2)(x 1+p 2)+y 12=0,∴x 12+y 12=p 24,∴x 12+2px 1−p 24=0(x 1>0), ∴x 1=√5−22p ,x 2=2+√52p ,∴|AF|−|BF|=(x 2+p2)−(x 1+p2)=2p , 即2p =4,则p =2, 故选A .6.抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=2√33|AB|,则∠AFB的最大值为()A. π3B. 3π4C. 5π6D. 2π3【答案】D【解析】【分析】本题考查抛物线的定义,考查余弦定理、基本不等式的运用,属于中档题.利用余弦定理,结合基本不等式,即可求出∠AFB的最大值.【解答】解:因为x1+x2+4=2√33|AB|,|AF|+|BF|=x1+x2+4,所以|AF|+|BF|=2√33|AB|.在△AFB中,由余弦定理得:cos∠AFB=|AF|2+|BF|2−|AB|2 2|AF|⋅|BF|=(|AF|+|BF|)2−2|AF|⋅|BF|−|AB|22|AF|⋅|BF|=43|AB|2−|AB|22|AF|⋅|BF|−1=13|AB|22|AF|⋅|BF|−1.又|AF|+|BF|=2√33|AB|≥2√|AF|⋅|BF|⇒|AF|⋅|BF|≤13|AB|2.所以cos∠AFB≥13|AB|22×13|AB|2−1=−12,∴∠AFB的最大值为2π3,故选D.7.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=()A. ±13B. ±3 C. ±2√23D. ±2√2【答案】D【解析】【分析】本题主要考查了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题,属于中档题.如图,设A,B两点在抛物线的准线上的射影分别为A′,B′,过B作AA′的垂线BH,在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为k值,利用在直角三角形ABH中,tan∠BAH=丨BH丨丨AH丨,从而得出直线AB的斜率.【解答】解:如图,设A,B两点在抛物线的准线上的射影分别为A′,B′,过B 作AA′的垂线BH ,在三角形ABH 中,∠BAH 等于直线AB 的倾斜角,其正切值即为k 值, 设|BF|=n ,B 为AD 中点, 根据抛物线的定义可知:|AF|=|AA′|,|BF|=|BB′|,2|BB′|=|AA′|, 可得2|BF|=|AA′|,即|AF|=2|BF|, ∴|AF|=2n ,|AA′|=2n ,|BF|=n , ∴|AH|=n ,在直角三角形ABH 中,tan∠BAH =丨BH 丨丨AH 丨=√9n 2−n 2n=2√2,则直线l 的斜率k =2√2;同理求得:直线l 的斜率k =−2√2; 故选D .8. 过抛物线y 2=4x 的焦点F 作一倾斜角为π3的直线交抛物线于A ,B 两点(A 点在x 轴上方),则|AF||BF|=( )A. √3B. √2C. 3D. 2【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),则抛物线y 2=4x 中p =2.|AB|=x 1+x 2+p =2p sim 2θ=8p3∴x 1+x 2=103,又x 1x 2=p 24=1,可得x 1=3,x 2=13, 则|AF||BF|=3+113+1=3,故选:C .设出A 、B 坐标,利用抛物线焦半径公式求出|AB|,结合抛物线的性质,求出A 、B 的坐标,然后求比值|AF||BF|即可.本题主要考察了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题.9.已知P是抛物线y2=4x上的一个动点,Q是圆(x−3)2+(y−1)2=1上的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为()A. 3B. 4C. 5D. 6【答案】A【解析】【分析】本题主要考查抛物线的性质,以及圆锥曲线中的最值.【解答】解:根据题意得,N(1,0)为抛物线的焦点,如图所示:过点P做PA垂直准线于点A,根据抛物线的定义,可知PA=PN,所以PN+PQ=PA+PQ,当P运动到点P1处时,即圆心C,P1,B在同一条直线上,且垂直准线时,有最小值,最小值为(PN+PQ)min=CB−r=3+1−1=3;故选A.10.已知抛物线C:y2=2px(p>0)的焦点为F,过F的直线交抛物线C于A,B两点,以,3),且ΔAOB的面积为3,则p=线段AB为直径的圆与抛物线C的准线切于M(−p2A. √3B. 2√3C. 1D. 2【答案】A【解析】【分析】本题考查了抛物线的标准方程以及点差法的使用,属于基础题.【解答】解:令A(x 1,y 1),B(x 2,y 2),由已知以线段AB 为直径的圆与抛物线C 的准线切于M(−p2,3),可得y 1+y 2=6,将A 、B 两点坐标带入,作差k 可得k AB =p3, 令AB 的方程为y =p3(x −p2),与抛物线联立可得: y 2−6y −p 2=0,∴y 1y 2=−p 2, ∵△AOB 的面积6. 故12×p2×√36+4p 2=12, 解得p =√3. 故选A .11. 如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x −1)2+y 2=14于点A ,B 、C 、D 四点,则|AB|+|CD|的值是( ) A. 6 B. 7 C. 8 D. 9【答案】B【解析】解:∵y 2=4x ,焦点F(1,0),准线l 0:x =−1 由定义得:|AF|=x A +1,又∵|AF|=|AB|+12,∴|AB|=x A +12; 同理:|CD|=x D +12,直线l :y =x −1,代入抛物线方程,得:x 2−6x +1=0, ∴x A x D =1,x A +x D =6, ∴|AB|+|CD|=6+1=7.综上所述4|AB|+|CD|的最小值为7. 故选:B .求出||AB|=x A +12,|CD|=x D +12,l :y =x −1,代入抛物线方程,利用韦达定理,化简|AB|+|CD|即可得到结果.本题考查圆与抛物线的综合,考查基本不等式的运用,考查学生的计算能力,属于中档题.12. 已知抛物线C :x 2=2py(p >0)的焦点为F ,点A(1,0),直线FA 与抛物线C 交于点(P 在第一象限内),与其准线交于点Q ,若PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ ,则点P 到y 轴距离为( ) A. 2√2−1B. 2√2−2C. 3√2−1D. 3√2−2【答案】B【解析】解:抛物线C :x 2=2py(p >0)的焦点为F(0,P2),其准线方程为y =−p2, ∵A(1,0),∴直线AF 的方程为y =−p2(x −1), 由{y =−p2(x −1)y =−p 2,解得x =2,y =−p2,则Q(2,−p 2), ∵PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ , ∴(2−x P ,−p2−y p )=√2(x P ,y p −1),∴2−x P =√2x P , ∴x P =2√2−2.故点P 到y 轴距离为2√2−2. 故选:B .先求出直线AF 的方程,再求出点Q 的坐标,根据若PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ ,即可求出答案. 本题考查了抛物线的性质,直线方程,向量的运算,属于基础题13. 过抛物线C :x 2=2py(p >0)的焦点F 的直线交该抛物线于A 、B 两点,若4|AF|=|BF|,O 为坐标原点,则|AF||OF|=( )A. 54B. 34C. 4D. 5【答案】A【解析】解:过A 作AE ⊥准线,过B 作BG ⊥准线,过A 作AD ⊥BG 交BG 于点D ,交y 轴于点C设|AF|=x ,则|BF|=4x ,F(0,p2),准线:y =−p2,根据抛物线性质得:|AE|=|AF|=x ,|BG|=|BF|=4x ,|AB|=x +4x =5x ,|BD|=4x −x =3x ,|FC|=p −x , 由图可知:AFAB=FCBD ,即x5x =p−x 3x,解得x =58p ,则|AF||OF|=58p 12p =54.故选:A .根据条件画出示意图,设|AF|=x ,则|BF|=4x ,利用AFAB =FCBD ,求出x =58p ,进而求出比值.本题考查抛物线中两线段比值的求法,考查抛物线、直线方程等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14. 已知直线l :4x −3y +6=0和抛物线C :y 2=4x ,P 为C 上的一点,且P 到直线l 的距离与P 到C 的焦点距离相等,那么这样的点P 有( ) A. 0个 B. 1个 C. 2个 D. 无数个 【答案】C【解析】解:抛物线C :y 2=4x 的焦点坐标(1,0),(1,0)到直线4x −3y +6=0的距离为:√42+32=2,与抛物线的焦点坐标到准线的距离相等,所以由题意可知:如图:直线PF 与抛物线一定有两个交点. 故选:C .求出抛物线的焦点坐标,求出焦点到直线4x −3y +6=0的距离,利用数形结合判断求解即可.本题求抛物线上的动点到两条定直线的距离之和的最小值.着重考查了点到直线的距离公式、抛物线的简单几何性质等知识,属于中档题15. 已知直线l 过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,点B 关于x轴的对称点为B 1,直线AB 1与x 轴相交于C 点,若直线AC 的斜率为√32,则△ABC 的面积为( )A. 8√33B. 4√33C. 4√3D. 5√33【答案】A【解析】【分析】本题考查抛物线的性质,熟知抛物线的准线方程与交点坐标是解题的关键,设直线AB 的方程为x =ky +1,A(x 1,y 1),B(x 2,y 2),根据题意则B 2(x 2,−y 2),再结合直线AC 的斜率为√32,求出y 1−y 2=8√33,代入面积公式计算即可. 【解答】解:设抛物线的准线与x 轴的交点为C ,过点A 、B 分别作准线的垂线,垂足分别为M 、N ,∵AM //FC 1 //BN , ∴MC 1NC 1=AF BF =AM BN.又∵∠AMC 1=∠BNC 1=90∘, ∴△AMC 1∽△BNC 1, ∴∠AC 1F =∠BC 1F .∵点B 关于x 轴的对称点为B 1, ∴点C 1与C 重合.设直线AB 的方程为x =ky +1,A(x 1,y 1),B(x 2,y 2),则B 2(x 2,−y 2). 联立方程{y 2=4xx =ky +1.得y 2−4ky −4=0.∴y 1+y 2=4k ,y 1y 2=−4. 又∵直线AC 的斜率为√32,∴y 1+y 2x 1−x 2=y 1+y 2k (y 1−y 2)=√32, 即y 1−y 2=8√33, ∴△ABC 的面积为12×|CF |×|y 1−y 2|=12×2×8√33=8√33. 故选A .16. 已知抛物线y 2=x ,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则△ABO 与△AFO 的面积之和的最小值是( )A. 2B. 3C. 17√28D. √10【答案】B【解析】【分析】本题主要考查了抛物线的性质以及基本不等式.可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理消元,最后将面积之和表示出来,探求最值问题. 【解答】解:设直线AB 的方程为:x =ty +m ,点A(x 1,y 1),B(x 2,y 2),直线AB 与x 轴的交点为M(m,0), 由{x =ty +my 2=x ⇒y 2−ty −m =0,根据韦达定理有y 1⋅y 2=−m , ∵OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2,∴x 1⋅x 2+y 1⋅y 2=2, 结合y 12=x 1及y 22=x 2,得(y 1⋅y 2)2+y 1⋅y 2−2=0, ∵点A ,B 位于x 轴的两侧,∴y 1⋅y 2=−2,故m =2. 不妨令点A 在x 轴上方,则y 1>0,又F(14,0),∴S △ABO +S △AFO =12×2×(y 1−y 2)+12×14×y 1=12×2×(y 1−y 2)+12×14y 1,=98y 1+2y 1≥2√98y 1⋅2y 1=3.当且仅当98y 1=2y 1,即y 1=43时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3, 故选B .17. 抛物线C :y 2=2px 的准线交x 轴于点M ,过点M 的直线交抛物线于N ,Q 两点,F 为抛物线的焦点,若∠NFQ =90°,则直线NQ 的斜率k(k >0)为( )A. 2B. √2C. 12D. √22【答案】D【解析】解:如图,M(−p2,0),NQ :y =k(x +p2),联立{y 2=2pxy =k(x +p 2),得k 2x 2−p(2−k 2)x +14p 2k 2=0.△=p 2(2−k 2)2−p 2k 4.设N(x 1,y 1),Q(x 2,y 2), 则x 1+x 2=p(2−k 2)k 2,x 1x 2=p 24.又F(p2,0),∴FN⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =(x 1−p 2,y 1)⋅(x 2−p2,y 2) =x 1x 2−p 2(x 1+x 2)+p 24+y 1y 2=x 1x 2−p 2(x 1+x 2)+p 24+k 2(x 1+p 2)(x 2+p2)=(k 2+1)x 1x 2−p2(1−k 2)(x 1+x 2)+(1+k 2)p 24=2k 2−1k 2p 2.∵∠NFQ =90°,∴FN ⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =0,∴FN ⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =2k 2−1k 2p 2=0,∵p ≠0,k >0,解得k =√22,当k =√22时,△=p 2(2−k 2)2−p 2k 4=2p 2>0,满足题意.∴直线NQ 的斜率k(k >0)为√22.故选:D .求出NQ :y =k(x +p2),与抛物线方程联立,利用根与系数的关系及∠NFQ =90°列式求得k 值.本题考查抛物线方程的求法,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.18. 己知抛物线C :x 2=4y 的焦点为F ,直线l 与抛物线C 交于A ,B 两点,延长AF交抛物线C 于点D ,若AB 的中点纵坐标为|AB|−1,则当∠AFB 最大时,|AD|=( ) A. 4 B. 8 C. 16D. 163【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),D(x 3,y 3), 由抛物线定义得:y 1+y 2+2=|AF|+|BF|, ∵y 1+y 22=|AB|−1,∴|AF|+|BF|=2|AB|,∴cos∠AFB =|AF|2+|BF|2−|AB|22|AF|⋅|BF|=3(|AF|2+|BF|2)−2|AF|⋅|BF|8|AF|⋅|BF|≥6|AF|⋅|BF|−2|AF|⋅|BF|8|AF|⋅|BF|=12,当且仅当|AF|=|BF|时取等号.∴当∠AFB 最大时,△AFB 为等边三角形,联立{y =√3x +1x 2=4y,消去y 得,x 2−4√3x −4=0. ∴y 1+y 3=√3(x 1+x 3)+2=14. ∴|AD|=16. 故选:C .设出A ,B ,D 的坐标,利用抛物线定义可得|AF|+|BF|=2|AB|,再由余弦定理写出cos∠AFB ,利用基本不等式求最值,可得当∠AFB 最大时,△AEB 为等边三角形,得到AF 所在直线方程,再与抛物线方程联立,结合根与系数的关系及抛物线定义求得|AD|. 本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,训练了利用基本不等式求最值,是中档题.19. 过抛物线C :y 2=x 的焦点F 分別作两条互相垂直的直线l 1,l 2,使l 1交C 于A ,B两点,l 2交C 于M ,N 两点,则|AB|⋅|MN|的最小值为( ) A. 4 B. 6 C. 8 D. 10 【答案】A【解析】【分析】本题考查了抛物线的简单性质,考查过焦点的弦、诱导公式、二倍角公式以及三角函数的最值,能熟练掌握相关的结论,解决问题事半功倍,属于中档题.设直线l 1的倾斜角为θ,则l 2的倾斜角为π2+θ,利用焦点弦的弦长公式分别表示出|AB|,|MN|,整理求得答案. 【解答】解:设直线l 1的倾斜角为θ,则l 2的倾斜角为π2+θ, 根据焦点弦长公式可得|AB|=2p sin 2θ=1sin 2θ, |MN|=2psin 2(π2−θ)=2p cos 2θ=1cos 2θ, ∴|AB|×|MN|=1sin 2θ×1cos 2θ=1sin 2θcos 2θ=4sin 22θ,∵0<sin 22θ≤1,∴当θ=45°时,|AB||MN|的最小值为4. 故选A .20. 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ ⃗⃗⃗⃗⃗ =−4FP⃗⃗⃗⃗⃗ ,则|QF|=( ) A. 35B. 52C. 20D. 3【答案】C【解析】解:抛物线C :y 2=8x 的焦点为F(2,0),设P(−2,t),Q(x,y). ∵FQ⃗⃗⃗⃗⃗ =−4FP ⃗⃗⃗⃗⃗ ,可得(−4)⋅(−4,t)=(x −2,y), 解得{x =18y =−4t由抛物线的定义知|QF|=x +p2=18+2=20故选:C抛物线C :y 2=8x 的焦点为F(2,0),设P(−2,t),Q(x,y).利用FQ⃗⃗⃗⃗⃗ =−4FP ⃗⃗⃗⃗⃗ ,可得(−4)(−4,t)=4(x −2,y),解得(x,y),代入y 2=8x 可得t 2=128,再利用两点之间的距离公式即可得出.本题考查抛物线的定义和性质,考查向量知识的运用,考查学生的计算能力,属于中档题.21. 已知抛物线x 2=4y 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C的一个交点,用PQ⃗⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗ ,则|FQ ⃗⃗⃗⃗⃗ |=( ) A. 3或4B. 85或83C. 4或83D. 83【答案】D【解析】【分析】本题主要考查抛物线的性质及几何意义,难度较易,属于中档题.由抛物线的焦点坐标和准线方程,设出P ,Q 的坐标,得到向量PF ,FQ 的坐标,由向量共线的坐标关系,以及抛物线的定义,即可求得. 【解答】抛物线x 2=4y 的焦点为F(0,1),准线为l:y =−1,设P(a,−1),Q(m,m 24),则PQ ⃗⃗⃗⃗⃗ =(m −a,m24+1),FQ ⃗⃗⃗⃗⃗ =(m,m 24−1), ∵PQ⃗⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗ , ∴a =−3m,3m 2=20,解得m 2=203,由抛物线的定义可得|FQ⃗⃗⃗⃗⃗ |=m 24+1=83, 故选D .22. 已知抛物线C :y 2=2px(p >0)的焦点为F ,不过F 的直线与C 的交点为A ,B ,与C 的准线的交点为D.若|BF|=2,△BDF 与△ADF 的面积之比为45,则|AF|=A. √52B. 52C. √32D. √3【答案】B【解析】【分析】本题考查了抛物线的定义,直线与抛物线的关系,考查学生平面几何知识,属于中档题. 利用抛物线定义得AN =AF,BM =BF =2,由三角形面积之比得到12×BD×ℎ12×AB×ℎ=BDAB=45,利用相似三角形得到BF AF =45,计算答案. 【解答】解:由题意可得准线方程为x =−p 2,F (p2,0);过点A 作直线AN 垂直与准线与N ,过点B 作直线BM 垂直与准线与M , 所以由抛物线的定义得AN =AF,BM =BF =2, 因为△BDF 与△ADF 的面积之比为45,所以12×BD×ℎ12×AB×ℎ=BD AB =45,所以BD =4AB ,因为△DBM ∽△DAN ,所以BMAN =DBAD =45,即BFAF =45, 所以AF =52; 故选B .。
专题12 抛物线及其性质(知识梳理+专题过关)(解析版)
专题12抛物线及其性质【考点预测】知识点一、抛物线的定义平面内与一个定点F 和一条定直线()l F l ∉的距离相等的点的轨迹叫做抛物线,定点F 叫抛物线的焦点,定直线l 叫做抛物线的准线.注:若在定义中有F l ∈,则动点的轨迹为l 的垂线,垂足为点F .知识点二、抛物线的方程、图形及性质抛物线的标准方程有4种形式:22y px =,22y px =-,22x py =,22(0)x py p =->,其中一次项与对称轴一致,一次项系数的符号决定开口方向图形标准方程22(0)y px p =>22(0)y px p =->22(0)x py p =>22(0)x py p =->顶点(00)O ,范围0x ≥,y R ∈0x ≤,y R∈0y ≥,x R ∈0y ≤,x R∈对称轴x 轴y 轴焦点(0)2pF ,(0)2p F -,(0)2p F ,(0)2pF -,离心率1e =准线方程2p x =-2p x =2p y =-2p y =焦半径11()A x y ,12pAF x =+12p AF x =-+12p AF y =+12p AF y =-+【方法技巧与总结】1、点00(,)P x y 与抛物线22(0)y px p =>的关系(1)P 在抛物线内(含焦点)2002y px ⇔<.(2)P 在抛物线上2002y px ⇔=.(3)P 在抛物线外2002y px ⇔>.2、焦半径抛物线上的点00(,)P x y 与焦点F 的距离称为焦半径,若22(0)y px p =>,则焦半径02pPF x =+,max2p PF =.3、(0)p p >的几何意义p 为焦点F 到准线l 的距离,即焦准距,p 越大,抛物线开口越大.4、焦点弦若AB 为抛物线22(0)y px p =>的焦点弦,11(,)A x y ,22(,)B x y ,则有以下结论:(1)2124p x x =.(2)212y y p =-.(3)焦点弦长公式1:12AB x x p =++,12x x p +≥=,当12x x =时,焦点弦取最小值2p ,即所有焦点弦中通径最短,其长度为2p .焦点弦长公式2:22sin pAB α=(α为直线AB 与对称轴的夹角).(4)AOB ∆的面积公式:22sin AOB p S α∆=(α为直线AB 与对称轴的夹角).5、抛物线的弦若AB 为抛物线22(p 0)y px =>的任意一条弦,1122(,),(,)A x y B x y ,弦的中点为000(,)(0)M x y y ≠,则(1)弦长公式:1212(0)AB AB x y k k =-=-=≠(2)0AB p k y =(3)直线AB 的方程为000()py y x x y -=-(4)线段AB 的垂直平分线方程为000()y y y x x p-=--6、求抛物线标准方程的焦点和准线的快速方法(4A法)(1)2(0)y Ax A =≠焦点为(,0)4A ,准线为4Ax =-(2)2(0)x Ay A =≠焦点为(0,)4A ,准线为4Ay =-如24y x =,即24y x =,焦点为1(0,)16,准线方程为116y =-7、参数方程22(0)y px p =>的参数方程为222x pt y pt ⎧=⎨=⎩(参数t R ∈)8、切线方程和切点弦方程抛物线22(0)y px p =>的切线方程为00()y y p x x =+,00(,)x y 为切点切点弦方程为00()y y p x x =+,点00(,)x y 在抛物线外与中点弦平行的直线为00()y y p x x =+,此直线与抛物线相离,点00(,)x y (含焦点)是弦AB 的中点,中点弦AB 的斜率与这条直线的斜率相等,用点差法也可以得到同样的结果.9、抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2p A p ,,()2p B p -,,可得||2AB p =,故抛物线的通径长为2p .10、弦的中点坐标与弦所在直线的斜率的关系:0py k=11、焦点弦的常考性质已知11()A x y ,、22()B x y ,是过抛物线22(0)y px p =>焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN l ⊥,N 为垂足.(1)以AB 为直径的圆必与准线l 相切,以AF (或BF )为直径的圆与y 轴相切;(2)FN AB ⊥,FC FD⊥(3)2124p x x =;212y y p =-(4)设BD l ⊥,D 为垂足,则A 、O 、D 三点在一条直线上【专题过关】【考点目录】考点一:抛物线的定义与方程考点二:抛物线的轨迹方程考点三:与抛物线有关的距离和最值问题考点四:抛物线中三角形,四边形的面积问题考点五:焦半径问题考点六:抛物线的性质【典型考题】考点一:抛物线的定义与方程1.(2022·江苏·高二)已知抛物线的顶点在原点,对称轴为y 轴,其上一点(),4A m -到焦点F 的距离为6.求抛物线的方程及点A 的坐标.【解析】由题意,设抛物线方程为()220x py p =->,则其准线方程为2p y =,∴462p+=,得p =4,故抛物线方程为28x y =-;又∵点(),4A m -在抛物线上,∴232m =,∴m =±即点A 的坐标为()4-或()4--.2.(多选题)(2022·全国·高二单元测试)下列方程的图形为抛物线的是()A .10x +=B .2y -=C D .2230x x y --+=【答案】ACD【解析】对于A ,方程10x +=化为1x +=(,)x y 到定点(0,0)的距离与到定直线1x =-的距离相等,且定点(0,0)不在定直线1x =-上,原方程表示的图形是抛物线,A 是;对于B ,方程2y -=(,)x y 到定点(1,2)-的距离与到定直线2y =的距离相等,而定点(1,2)-在定直线2y =上,原方程表示的图形不是抛物线,B 不是;对于C (,)x y 到定点(2,3)的距离与到定直线3410x y +-=的距离相等,且定点(2,3)不在定直线3410x y +-=上,原方程表示的图形是抛物线,C 是;对于D ,方程2230x x y --+=化为223y x x =-+,方程表示的图形是抛物线,D 是.故选:ACD3.(多选题)(2022·广东清远·高二期末)已知0mn ≠,则方程221mx ny +=与2ny mx =在同一坐标系内对应的图形可能是()A .B .C .D .【答案】BC【解析】将对应方程化为标准方程得22111x ym n+=,2m y x n=,所以抛物线2my x n=的焦点在x 轴上,故排除D 选项,对于A 选项,由图可知0mn>,0m <,0n >,矛盾,故A 错误;对于B 选项,由图可知0mn<,0m <,0n >,满足,故B 正确;对于C 选项,由图可知,0mn>,0m >,0n >,满足,故C 正确;故选:BC.4.(2022·江西吉安·高二期末(理))已知抛物线C :()220y px p =>的焦点为F ,准线l 上有两点A ,B ,若FAB 为等腰直角三角形且面积为8,则抛物线C 的标准方程是()A .2y =B .28y x =C .2y =或28y x =D .24y x=【答案】C【解析】由题意得,当2AFB π∠=时,1282AFB S p p =⨯⨯=△,解得p =;当2FAB π∠=或2FBA π∠=时,2182AFB S p ==△,解得4p =,所以抛物线的方程是2y =或28y x =.故选:C.5.(2022·全国·高二课时练习)下列条件中,一定能得到抛物线的标准方程为28y x =的是______(填序号)(写出一个正确答案即可).①焦点在x 轴上;②焦点在y 轴上;③抛物线上横坐标为1的点到焦点的距离为3;④焦点到准线的距离为4;⑤由原点向过焦点的某直线作垂线,垂足坐标为()1,1-.【答案】①③(答案不唯一)【解析】若要得到抛物线的方程为28y x =,则焦点一定在x 轴上,故①必选,②不选.若选①③,由抛物线的定义可知132p+=,得4p =,则抛物线的方程为28y x =.若选①⑤,设焦点,02p F ⎛⎫⎪⎝⎭()0p >,()1,1A -,112AF k p =-,1OA k =-,由1AF OA k k ⋅=-,得1112p =-,解得4p =,故抛物线的方程为28y x =.由④可知4p =,故还可选择①④.故答案可为①③或①⑤或①④.故答案为:①③(答案不唯一)6.(2022·全国·高二课时练习)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为5m ,跨径为12m ,则桥形对应的抛物线的焦点到准线的距离为______m .【答案】185【解析】以抛物线的最高点O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的解析式为22x py =-,0p >,因为抛物线过点()6,5-,所以3610p =,可得185p =,所以抛物线的焦点到准线的距离为18m 5.故答案为:1857.(2022·全国·高二课时练习)设抛物线C 的顶点在坐标原点,焦点F 在坐标轴上,点P 在抛物线C 上,52PF =,若以线段PF 为直径的圆过坐标轴上距离原点为1的点,试写出一个满足题意的抛物线C 的方程为______.【答案】22x y =(答案不唯一)【解析】由题意,若抛物线的焦点F 在y 轴正半轴上,则可设抛物线方程为22x py =(0p >),()00,P x y ,0,2p F ⎛⎫ ⎪⎝⎭,由焦半径公式可知0522p y +=,圆的半径为54,得052p y -=,并且线段PF 中点的纵坐标是05224py +=,所以以线段PF 为直径的圆与x 轴相切,切点坐标为()1,0-或()1,0,所以02x =±,即点P 的坐标为52,2p -⎛⎫± ⎝⎭,代入抛物线方程22x py =(0p >)得5422p p -=⋅,解得1p =或4p =,即当点F 在y 轴正半轴上时,抛物线方程是22x y =或28x y =.同理,当点F 在y 轴负半轴时,抛物线方程为22x x =-或28x y =-,当点F 在x 轴正半轴时,抛物线方程为22y x =或28y x =,当点F 在x 轴负半轴时,抛物线方程为22y x =-或28y x =-.故答案为:22x y =(答案不唯一).8.(2022·山西·怀仁市第一中学校高二期中(理))设抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,FA 为半径的圆交l 于B ,D 两点.若90ABD ∠=︒,且ABF的面积为C 的方程为()A .22y x =B .24y x =C .28y x =D .216y =【答案】B【解析】∵以F 为圆心,FA 为半径的圆交l 于B ,D 两点,90ABD ∠=︒,结合抛物线的定义可得:AB AF BF==ABF ∴是等边三角形,30FBD ∴∠=︒.ABF2=4BF ∴=.又点F 到准线的距离为sin 302BF p ︒==,则该抛物线的方程为24y x =.故选:B .9.(2022·全国·高二课时练习)如图,过抛物线()220y px p =>的焦点F 的直线交抛物线于点,A B ,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线的方程为()A .29y x =B .26y x =C .23y x =D .212y x=【答案】C【解析】作AD l ⊥,BE l ⊥,垂足分别为,D E ,设l 与x 轴交于点G ,由抛物线定义知:BE BF =,3AD AF ==,设BF a =,则BE a =,2BC a =,1sin 22a BCE a ∴∠==,则6BCE π∠=,26AC AD ∴==,又33AC AF BF BC a =++=+,1a \=,1BE ∴=,23BE BC FGCF==,32FG ∴=,即32p =,∴抛物线方程为:23y x =.故选:C.10.(2022·全国·高二课时练习)已知抛物线y 2=2px (p >0)经过点M (x 0,),若点M 到准线l 的距离为3,则该抛物线的方程为()A .y 2=4xB .y 2=2x 或y 2=4xC .y 2=8xD .y 2=4x 或y 2=8x【答案】D【解析】∵抛物线y 2=2px (p >0)经过点M (x 0,),∴202px =,可得04x p=.又点M 到准线l 的距离为3,∴432pp +=,解得p =2或p =4.则该抛物线的方程为y 2=4x 或y 2=8x .故选:D.11.(2022·全国·高二课时练习)苏州市“东方之门”是由两栋超高层建筑组成的双塔连体建筑(如图1所示),“门”的内侧曲线呈抛物线形.图2是“东方之门”的示意图,已知30m CD =,60m AB =,点D 到直线AB 的距离为150m ,则此抛物线顶端O 到AB 的距离为()A .180mB .200mC .220mD .240m【答案】B【解析】以O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的方程为()220x py p =->,由题意设()15,D h ,0h <,()30,150B h -,则()22152302150php h ⎧=-⎪⎨=--⎪⎩,解得502.25h p =-⎧⎨=⎩,所以此抛物线顶端O 到AB 的距离为()50150200m +=.故选:B .考点二:抛物线的轨迹方程12.(2022·全国·高二课时练习)点()1,0A ,点B 是x 轴上的动点,线段PB 的中点E 在y 轴上,且AE 垂直PB ,则点P 的轨迹方程为______.【答案】24y x =()0x ≠【解析】设(),P x y ,(),0B m ,则,22x m y E +⎛⎫⎪⎝⎭.由点E 在y 轴上,得02x m +=,则m x =-,即0,2y E ⎛⎫⎪⎝⎭.又AE PB ⊥,若0x ≠,则21012AE PB yy k k x⋅=⨯=--,即24y x =.若0x =,则0m =,此时点P ,B 重合,直线PB 不存在.所以点P 的轨迹方程是24y x =()0x ≠.故答案为:24y x =()0x ≠.13.(2022·全国·高二课时练习)若动点(,)M x y 满足()()225123412x y x y -+-=-+,则点M 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线【答案】D【解析】由题意,动点(,)M x y 满足()()225123412x y x y -+-=-+,()()223412125x y x y -+-+-=,即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.14.(2022·江西·赣州市赣县第三中学高二开学考试(理))已知动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,则点M 的轨迹方程为()A .22y x=B .24y x=C .22y x=-D .24y x=-【答案】B【解析】因为动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,所以点M 到点(1,0)A 的距离等于它到直线1x =-的距离,即M 的轨迹为以点(1,0)A 为焦点,直线1x =-为准线的抛物线,所以12p=,解得2p =,轨迹方程为24y x =.故选:B .15.(2022·全国·高二课时练习)若动圆M 经过双曲线2213y x -=的左焦点且与直线x =2相切,则圆心M 的坐标满足的方程是______.【答案】28y x=-【解析】双曲线2213y x -=的左焦点为F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知圆心的轨迹是焦点为F ,准线为x =2的抛物线,其方程为28y x =-.故答案为:28y x =-.16.(2022·全国·高二课时练习)若点(),P x y 满足方程3412x y =++,则点P 的轨迹是______.【答案】抛物线【解析】由|3412|x y =++|3412|5x y ++=,等式左边表示点(),x y 和点()1,2的距离,等式的右边表示点(),x y 到直线34120x y ++=的距离.整个等式表示的意义是点(),x y 到点()1,2的距离和到直线34120x y ++=的距离相等,其轨迹为抛物线.故答案为:抛物线17.(2022·全国·高二课时练习)与点()0,3F -和直线30y -=的距离相等的点的轨迹方程是______.【答案】212x y=-【解析】由抛物线的定义可得平面内与点()0,3F -和直线30y -=的距离相等的点的轨迹为抛物线,且()0,3F -为焦点,直线3y =为准线,设抛物线的方程为22(0)x py p =->,可知32p=,解得6p =,所以该抛物线方程是212x y =-,故答案为:212x y=-18.(2022·河北唐山·高二期中(理))已知动点(,)P x y 满足341x y =+-,则点P 的轨迹为()A .直线B .抛物线C .双曲线D .椭圆【答案】B【解析】把341x y =+-3415x y +-,3415x y +-可看做(,)x y 与(1,2)的距离等于(,)x y 到直线3410x y +-=的距离,由于点(1,2)不在直线3410x y +-=上,满足抛物线的定义,则点P 的轨迹为抛物线,故选:B19.(2022·全国·高二课时练习)平面上动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,求动点M 满足的方程.【解析】因为动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,所以动点M 到定点()3,0F 的距离与M 到直线l :30x +=的距离相等,所以M 的轨迹是以()3,0F 为焦点,直线l :3x =-为准线的抛物线,此时6p =,故所求的点M 满足的方程是212y x =.20.(2022·全国·高二课时练习)已知点M 与点(4,0)F 的距离比它到直线:60l x +=的距离小2,求点M 的轨迹方程.【解析】由题意知动点M 到(4,0)的距离比它到直线:6l x =-的距离小2,即动点M 到(4,0)的距离与它到直线4x =-的距离相等,由抛物线定义可知动点M 的轨迹为以(4,0)为焦点的抛物线,则点M 的轨迹方程为216y x =.21.(2022·全国·高二课时练习)已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【解析】由题意知:点P 到圆心A (-2,0)的距离和到定直线x =2的距离相等,所以点P 的轨迹为抛物线,且焦点为A ,准线为x =2,故点P 的轨迹方程为y 2=-8x .22.(2022·全国·高二课时练习)已知点()1,0A ,直线:1l x =-,两个动圆均过A 且与l 相切,若圆心分别为1C 、2C ,则1C 的轨迹方程为___________;若动点M 满足22122C M C C C A =+,则M 的轨迹方程为___________.【答案】24y x =221y x =-【解析】由抛物线的定义得动圆的圆心轨迹是以()1,0A 为焦点,直线l :1x =-为准线的抛物线,所以1C 的轨迹方程为24y x =,设()1,C a b ,()2,C m n ,(),M x y ,因为动点M 满足22122C M C C C A =+,所以()()()2,,1,x m y n a m b n m n --=--+--,即21x a =+,2y b =,所以21a x =-,2b y =,因为24b a =,所以()()22421y x =-,所以221y x =-,即M 的轨迹方程为221y x =-.故答案为:24y x =;221y x =-.考点三:与抛物线有关的距离和最值问题23.(2022·全国·高二课时练习)已知点()2,0P ,点Q 在曲线2:2C y x =上.(1)若点Q 在第一象限内,且2PQ =,求点Q 的坐标;(2)求PQ 的最小值.【解析】(1)设()(),0,0Q x y x y >>,则22y x =,由已知条件得2PQ ==,将22y x =代入上式,并变形得,220,x x -=解得x=0(舍去)或x =2.当x =2时,2y =±,只有x =2,y =2满足条件,所以()2,2Q ;(2)PQ ,其中22y x =,所以()()()22222224130PQ x x x x x x =-+=-+=-+≥,所以当x =1时,min PQ =24.(2022·全国·高二课时练习)若M 是抛物线22y x =上一动点,点103,3P ⎛⎫⎪⎝⎭,设d 是点M 到准线的距离,要使d MP +最小,求点M 的坐标.【解析】由题意,可知抛物线的焦点1(,0)2F ,由抛物线的定义有||||d MP MF MP PF +=+≥,所以d MP +最小值为||PF ,此时点M 为直线PF 与抛物线的交点,而直线PF 的方程求得为:4233y x =-,所以有242332y x y x ⎧=-⎪⎨⎪=⎩,解得4143x y =⎧⎪⎨=⎪⎩或1413x y ⎧=⎪⎪⎨⎪=-⎪⎩(舍),所以14(4,)3M 25.(2022·全国·高二课时练习)已知抛物线22y x =的焦点是F ,点P 是抛物线上的动点,若()3,2A ,则PA PF +的最小值为______,此时点P 的坐标为______.【答案】72【解析】易知点A 在抛物线内部,设抛物线的准线为l ,则l 的方程为12x =-,过点P 作PQ l ⊥于点Q ,则PA PF PA PQ +=+,当PA l ⊥,即A ,P ,Q 三点共线时,PA PF +最小,最小值为17322+=,此时点P 的纵坐标为2,代入22y x =,得2x =,所以此时点P 的坐标为()2,2.故答案为:72;()2,2.26.(2022·全国·高二课时练习)设P 是抛物线24y x =上的一个动点,点F 是焦点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值;(2)若()3,2B ,求PB PF +的最小值.【解析】(1)抛物线24y x =的焦点为()1,0F ,准线是1x =-.由抛物线的定义,知点P 到直线1x =-的距离等于点P 到焦点F 的距离,所以问题转化为求抛物线上一点P 到点()1,1A -的距离与其到点()1,0F 的距离之和的最小值,如图,当A ,P ,F 共线时上述距离之和最小,连接AF 交抛物线于点P ,此时所求的最小值为||AF =(2)由题意()3,2B ,可知2243<⨯,故点B 在抛物线内部(焦点所在一侧),如图,作BQ 垂直准线于点Q ,交抛物线于点1P ,连接1PF ,此时11PQ PF =,当点P 与点1P 重合时,PB PF +的值最小,此时3(1)4PB PF BQ +==--=,即PB PF +的最小值为4.27.(多选题)(2022·全国·高二单元测试)已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-=上一动点,则下列说法正确的有()A .PF 的最小值为1B .QFC .PF PQ +的最小值为4D .PF PQ +1+【答案】AC【解析】抛物线焦点为()1,0F ,准线为1x =-,作出图象,对选项A :由抛物线的性质可知:PF 的最小值为1OF =,选项A 正确;对选项B :注意到F 是定点,由圆的性质可知:QF 的最小值为1CF r -=,选项B 错误;对选项CD :过点P 作抛物线准线的垂线,垂足为M ,由抛物线定义可知PF PM =,故PF PQ PM PQ +=+,PM PQ +的最小值为点Q 到准线1x =-的距离,故最小值为4,从而选项C 正确,选项D 错误.故选:AC.28.(2022·河南·襄城县实验高级中学高二阶段练习(文))已知P 为抛物线()2:20C y px p =>上的动点,C 的准线l 与x 轴的交点为A ,当点P 的横坐标为1时,2PF =,则PF PA的取值范围是()A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .22⎡⎢⎣⎦【答案】B【解析】因为抛物线C 的方程为()22 0y px p =>,所以其准线方程为2p x =-.因为当点P 的横坐标为1时,2PF =,所以122p+=,所以 2p =,故拋物线C 的方程为24y x =.设直线PA 的倾斜角为θ,PP l '⊥垂足为P ',()1,0A -,由抛物线的性质可得PP PF '=,所以cos PF PP PAPAθ'==,所以当直线PA 与抛物线C 相切时,cos θ最小.设直线PA 的方程为1x my =-,联立方程组214x my y x=-⎧⎨=⎩,得2440y my -+=,由216160m ∆=-=,得1m =±,2tan 1,cos 2θθ==,所以cos 12θ≤≤,故PF PA ⎤∈⎥⎣⎦.故选:B29.(2022·四川·阆中中学高二阶段练习(理))已知抛物线21:8C y x =的焦点为F ,P 为C 上的动点,直线PF 与C 的另一交点为Q ,P 关于点(4,12)N 的对称点为M .当PQ QM +的值最小时,直线PQ 的方程为________.【答案】20x y -+=【解析】设A 为PQ 的中点,连接NA ,设抛物线C 的准线为l ,作QD l ⊥,AG l ⊥,PE l ⊥,垂足分别为D ,G ,E .则2MQ NA =,2PQ PF QF PE QD AG =+=+=,()2PQ QM AG NA ∴+=+,又点N 到直线l 的距离为13,13AG NA ∴+≥,当G ,N ,A 三点共线且A 在G ,N 之间时,13AN AG NG +==,此时,点A 的横坐标为4A x =.PQ ∵过点()0,2F ,故设PQ 方程为2y kx =+,代入218y x =,得28160x kx --=()11,P x y ,()22,Q x y ,则128x x k +=.当G ,N ,A 三点共线时,12288A x x x k +===,解得1k =,直线AM 的方程为2y x =+,此时()4,6A 点A 在G ,N 之间,13AN AG NG +==成立.所以当PQ QM +的值最小时,直线PQ 的方程为20x y -+=故答案为:20x y -+=30.(2022·天津一中高二期中)已知抛物线C :22y px =的准线为1x =-,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为___________.【答案】【解析】由题意知,2p =,∴抛物线C :24y x =.设()()000,0M x y x ≥,由题意知2004y x =,则()()()2222200000334188x y x x MN x =-+=-+=-+≥,当01x =时,2MN 取得最小值8,∴MN 的最小值为.故答案为:31.(2022·河南·濮阳一高高二期中(文))抛物线y 2=4x 的焦点为F ,点A (2,1),M 为抛物线上一点,且M 不在直线AF 上,则△MAF 周长的最小值为____.【答案】3【解析】如图所示,过M 作MN 垂直于抛物线的准线l ,垂足为N .易知F (1,0),因为△MAF 的周长为|AF |+|MF |+|AM |,|AF ||MF |+|AM |=|AM |+|MN |,所以当A 、M 、N 三点共线时,△MAF 的周长最小,最小值为2+13=.故答案为:332.(2022·上海市长征中学高二期中)抛物线2y x =,其上一点P 到A (3,-1)与到焦点距离之和为最小,则P 点坐标为________【答案】(1,1)-【解析】因为点(3,1)A -在抛物线内部,如图所示,设抛物线的准线为l ,过抛物线上一点P ,作PQ l ⊥于Q ,过A 作AB l ⊥于B .||||||||||PA PF PA PQ AB +=+≥,故当且仅当,,P A B 共线时,||||PA PF +的值最小.此时点P 坐标为0(,1)P x -,代入2y x =,得01x =.故点P 的坐标为(1,1)-.故答案为:(1,1)-33.(2022·河南·高二期中(文))如图所示,已知P 为抛物线()2:20C y px p =>上的一个动点,点()1,1Q ,F 为抛物线C 的焦点,若PF PQ +的最小值为3,则抛物线C 的标准方程为______.【答案】28y x=【解析】过点P 、Q 分别作准线的垂线,垂直分别为M 、N ,由抛物线定义可知PF PQ PM PQ NQ +=+≥,当P ,M ,Q 三点共线时等号成立所以132pNQ =+=,解得4p =所以抛物线C 的标准方程为28y x =.故答案为:28y x=34.(2022·上海·华东师范大学附属东昌中学高二期中)已知点()6,0A ,点P 在抛物线216y x=上运动,点B 在曲线()2241x y -+=上运动,则2PAPB的最小值是___________.【答案】6【解析】抛物线216y x =的焦点为(4,0)F ,设P 点坐标(,)x y ,则||4PF x =+22222||(6)(6)16436PA x y x x x x =-+=-+=++,由题意当||||15PB PF x =+=+时,225436P P x B x Ax +=++,令5x t +=,则5x t =-,222(5)4(5)36466141PAt t t PB t t t tt -++=+=+--=-,由基本不等式知41t t+≥t =时等号成立故2PA PB的最小值为6.故答案为:635.(多选题)(2022·福建泉州·高二期中)在平面直角坐标系xOy 中,(3,2)M -,F 为抛物线2:2(0)C x py p =->的焦点,点P 在C 上,PA x ⊥轴于A ,则()A .当2p =时,||||PF PM +的最小值为3B .当4p =时,||||PF PM +的最小值为4C .当4p =时,||||PA PM -的最大值为1D .当PF x ∥轴时,cos OPF ∠为定值【答案】BCD【解析】对于A :2p =时抛物线2:4C x y =-,焦点()0,1F -,点(3,2)M -在抛物线外,所以||||PF PM FM +≥当且仅当M 、P 、F 三点共线且P 在MF 之间时取等号(如下图所示),故A 错误;对于B 、C :当4p =时抛物线2:8C x y =-,焦点()0,2F -,准线方程为2y =,点(3,2)M -在抛物线内,设PA 与准线交于点N ,则||||PF PN =,所以()||||||||224PF PM PN PM MN +=+≥=--=,当且仅当M 、P 、N 三点共线且P 在MN 之间时取等号(如下图所示),故B 正确;||||||2||||||2||21PA PM PN PM PF PM FM -=--=--≤-=,当且仅当M 、P 、F 三点共线且F 在MP 之间时取等号(如下图所示),故C 正确;对于D :抛物线2:2C x py =-,焦点0,2p F ⎛⎫- ⎪⎝⎭,准线方程为2p y =,当//PF x ,此时2P p y =-,则222p x p ⎛⎫=-⨯- ⎪⎝⎭,解得p x p =±,即,2p P p ⎛⎫-- ⎪⎝⎭或,2p P p ⎛⎫- ⎪⎝⎭,如图取,2p P p ⎛⎫-- ⎪⎝⎭,则PF p =,()2252p OP p ⎛⎫=-+- ⎪⎝⎭,所以25cos 552PFp OPF OPp ∠==D 正确;故选:BCD36.(2022·江西赣州·高二期中(理))已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为()A .4B .6C .8D .10【答案】C【解析】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C37.(2022·新疆维吾尔自治区喀什第二中学高二期中(理))已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为()A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【解析】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把2y =-代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.38.(2022·黑龙江·哈师大附中高二期中(文))若点P 为抛物线2:2C y x =上的动点,F 为抛物线C 的焦点,则PF 的最小值为()A .1B .12C .14D .18【答案】D【解析】由22y x =,得212x y =,∴122p =,则128p =,所以焦点10,8F ⎛⎫⎪⎝⎭,由抛物线上所有点中,顶点到焦点的距离最小,得PF 的最小值为18.故选:D .39.(2022·黑龙江·大兴安岭实验中学高二期中)已知抛物线28y x =,定点A (4,2),F 为焦点,P 为抛物线上的动点,则PF PA +的最小值为()A .5B .6C .7D .8【答案】B【解析】如图,作,PQ AN 与准线2x =-垂直,垂足分别为,Q N ,则PQ PF =,6PF PA PQ PA AN +=+≥=,当且仅当,,Q P A 三点共线即P 到M 重合时等号成立.故选:B .40.(2022·四川省资阳中学高二开学考试(理))已知点P 是抛物线2:8C y x =上的动点,过点P 作圆()22:21M x y -+=的切线,切点为Q ,则PQ 的最小值为()A .1B 2C 3D .32【答案】C【解析】设点P 的坐标为(),m n ,有28n m =,由圆M 的圆心坐标为()2,0,是抛物线C 的焦点坐标,有22PM m =+≥,由圆的几何性质可得PQ QM ⊥,又由22221213PM P P M Q QM=-=-≥-=PQ 3故选:C.41.(2022·全国·高二期中)已知抛物线的方程为24y x =,焦点为F ,点A 的坐标为()3,4,若点P 在此抛物线上移动,记P 到其准线的距离为d ,则d PA +的最小值为______,此时P 的坐标为______.【答案】5355+⎝【解析】过点P 作抛物线准线的垂线,垂足为H ,连接PF ,作图如下:根据抛物线的定义,d PH PF ==,数形结合可知,当且仅当,,A P F 三点共线,且P 在,A F 之间时取得最小值;即d PA +的最小值为AF ,又()()3,4,1,0A F ,故()2231425AF =-+=此时直线AF 的方程为:()21y x =-,联立抛物线方程24y x =,可得:2310x x -+=,解得35x -=35x +=15y =即此时点P 的坐标为355+⎝.故答案为:253552⎛ ⎝.考点四:抛物线中三角形,四边形的面积问题42.(2022·河南洛阳·高二期末(理))已知点()1,0A ,点B 为直线1x =-上的动点,过B 作直线1x =-的垂线1l ,线段AB 的中垂线与1l 交于点P .(1)求点P 的轨迹C 的方程;(2)若过点()2,0E 的直线l 与曲线C 交于M ,N 两点,求MOE △与NAE 面积之和的最小值.(O 为坐标原点)【解析】(1)如图所示,由已知得点P 为线段AB 中垂线上一点,即PA PB =,即动点P 到点()1,0A 的距离与点P 到直线1x =-的距离相等,所以点P 的轨迹为抛物线,其焦点为()1,0A ,准线为直线1x =-,所以点P 的轨迹方程为24y x =,(2)如图所示:设2x ty =+,点()11,M x y ,()11N x y ,,联立直线与抛物线方程242y x x ty ⎧=⎨=+⎩,得2480y ty --=,()()2244816320t t ∆=--⨯-=+>,124y y t +=,128y y ⋅=-,1112MOE S OE y y =×=V ,21122NAE N S AE y y =×=V ,所以1212112422MOE ANE S S y y y y +=+³=V V ,当且仅当1212y y =,即12y =,24y =-时取等号,此时1224y y t +=-=,即12t =-,所以当直线直线1:22l x y =-+,时MOE ANE S S +V V 取得最小值为4.43.(2022·陕西西安·高二期末(文))已知抛物线C :()220y px p =>上的点()()4,0A m m >到其准线的距离为5.(1)求抛物线C 的方程;(2)已知O 为原点,点B 在抛物线C 上,若AOB 的面积为6,求点B 的坐标.【解析】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)将()4,A m 代入24y x =,得4m =.所以()4,4A ,直线OA 的方程为y x =,即0x y -=.设()2,2B t t ,则点B 到直线OA 的距离222t t d -=,又42OA =由题意得22142622t t -⨯=,解得1t =-或3t =.∴点B 的坐标是()1,2-或()9,6.44.(2022·新疆石河子一中高二阶段练习(理))已知抛物线()2:20C y px p =>的焦点为F ,点M 为C 上一点,点N 为x 轴上一点,若FMN 是边长为2的正三角形,则抛物线的方程为___________.【答案】22y x =或26y x=【解析】抛物线()2:20C y px p =>的焦点为,02p F ⎛⎫ ⎪⎝⎭,由抛物线的对称性,不妨设点M 为第一象限的点,因为点M 为C 上一点,点N 为x 轴上一点,FMN 是边长为2的正三角形,所以当N 在,02p F ⎛⎫ ⎪⎝⎭的右边时,点M 的坐标为2p M ⎛+ ⎝,所以2212p p ⎛⎫=+ ⎪⎝⎭,化简得2230p p +-=,解得1p =或3p =-(舍去),所以抛物线的方程为22y x =,当N 在,02p F ⎛⎫ ⎪⎝⎭的左边时,点M 的坐标为2p M ⎛- ⎝,所以2212p p ⎛⎫=- ⎪⎝⎭,化简得2230p p --=,解得1p =-或3p =,所以抛物线的方程为26y x =,综上,所求的抛物线方程为22y x =或26y x =故答案为:22y x =或26y x=45.(2022·全国·高二单元测试)抛物线()220y px p =>的焦点为F ,过抛物线上一点P 作x轴的平行线交y 轴于M 点,抛物线的准线交x 轴于点N ,四边形PMNF 为平行四边形,则点P 到x 轴的距离为___________.(用含P 的代数式表示)【解析】由題意可知,,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,,02p N ⎛⎫- ⎪⎝⎭,不妨设(P x ,四边形PMNF 为平行四边形,||||,PM NF ∴=∴,x p =∴点P 到x .46.(2022·陕西咸阳·高二期末(理))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率54e =,且双曲线C 的两条渐近线与抛物线22(0)y px p =>的准线围成的三角形的面积为3,则p 的值为()A .1B .2C .22D .4【答案】D【解析】根据题意,2514c b e a a ⎛⎫==+= ⎪⎝⎭,可得2916b a ⎛⎫= ⎪⎝⎭,所以双曲线的渐近线方程为34y x =±,抛物线的准线方程为2p x =-,设准线与抛物线的交点分别为M ,N ,则,23,4p x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,可解得3,28p p M ⎛⎫- ⎪⎝⎭,同理3,28p p N ⎛⎫-- ⎪⎝⎭,所以2133322416OMNp p Sp =⨯-⨯==,解得4p =.故选:D .47.(2022·四川师范大学附属中学高二阶段练习(理))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于点A 、B ,O 为坐标原点,若双曲线的离心率为2,三角形AOB 3p =()A .1B .32C .2D .3【答案】C【解析】由双曲线的离心率为2知,3ba=3y x =,又抛物线的准线方程为2p x =-,则设渐近线与准线的交点为3(,22p A --,3(,)22p B -,三角形AOB 的面积为133(322p p p⨯⨯=(0p >)解得2p =,故选:C48.(2022·湖北咸宁·高二期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为()A .8B .6C .4D .2【答案】C【解析】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C49.(2022·黑龙江·哈师大附中高二开学考试)已知点()0,1F ,点()(),0A x y y ≥为曲线C 上的动点,过A 作x 轴的垂线,垂足为B ,满足1AF AB +=.(1)曲线C 的方程(2)若,G H 为曲线C 上异于原点的两点,且满足0FG FH ⋅=,延长,GF HF 分别交曲线C 于点,M N ,求四边形GHMN 面积的最小值.【解析】(1)1AF AB +=,∴点A 到直线1y =-的距离等于其到点()0,1F 的距离,∴点A 轨迹是以F 为焦点的抛物线,∴曲线C 方程为:24x y =.(2)由题意知:直线,GM HN 斜率都存在,不妨设直线:1GM y kx =+,()11,G x y ,()22,M x y ,由214y kx x y =+⎧⎨=⎩得:2440x kx --=,则121244x x k x x +=⎧⎨=-⎩,()241GM k ∴==+;设直线1:1HN y x k =-+,同理可得:2141HN k ⎛⎫=+ ⎪⎝⎭,∴四边形GHMN 面积()2222111811822S GM HN k k k k ⎛⎫⎛⎫=⋅=++=++ ⎪ ⎪⎝⎭⎝⎭,又2212k k +≥(当且仅当221k k =,即1k =±时取等号),()82232S ∴≥⨯+=,即四边形GHMN 面积的最小值为32.50.(2022·黑龙江·大庆实验中学高二期中(理))设点30,2F ⎛⎫⎪⎝⎭,动圆P 经过点F 且和直线32y =-相切,记动圆的圆心P 的轨迹为曲线w .(1)求曲线w 的方程;(2)过点F 作互相垂直的直线1l 、2l ,分别交曲线w 于A 、C 和B 、D 两个点,求四边形ABCD 面积的最小值.【解析】(1)由抛物线的定义知点P 的轨迹为以F 为焦点的抛物线,322p =,即3p =,∴2:6w x y =.(2)设3:2AC y kx =+,由223,069026y kx k x kx x y⎧=+≠⎪⇒--=⎨⎪=⎩.设()11,A x y ,()22,C x y ,236360k ∆=+>121269x x kx x +=⎧⎨=-⎩()261AC k ==+,∵1l 与2l 互相垂直,∴以1k -换k 得2161BD k ⎛⎫=+ ⎪⎝⎭,()22111616122ABCD S AC BD k k ⎛⎫==⨯+⨯+ ⎪⎝⎭()221182182272k k ⎛⎫=++⨯+= ⎪⎝⎭≥,当1k =±时取等号,∴四边形ABCD 面积的最小值为72.51.(2022·全国·高二期中)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE的面积.【解析】(1)证明:设1(,2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=.设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.。
(完整版)《抛物线》典型例题12例(含标准答案解析)
《抛物线》典型例题12 例典型例题一例 1 指出抛物线的焦点坐标、准线方程.22(1)x24 y (2)x ay2(a 0)分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对 a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)p 2 ,∴焦点坐标是(0,1),准线方程是:y 12 1 1(2)原抛物线方程为:y2 1 x, 2 p 1 a a①当 a 0时,p 1,抛物线开口向右,2 4a11∴焦点坐标是(1 ,0),准线方程是:x 1.4a 4a②当a 0 时,p 1,抛物线开口向左,2 4a11∴焦点坐标是( ,0),准线方程是:x .4a 4a2 1 1 综合上述,当a 0时,抛物线x ay2的焦点坐标为(1 ,0),准线方程是:x14a 4a 典型例题二例 2 若直线y kx 2与抛物线y28x交于A、B两点,且AB中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求 k .故所求直线方程为: y 2x 2 .则所求直线方程为: y 2x 2 .典型例题三例 3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为 y 2 2px(p 0).如图所示,只须证明 A 2B MM 1 ,解法一:设 A(x 1, y 1) 、 B(x 2, y 2 ) ,则由:y kx 22y 28x可得:k 2x 2 (4k 8)x 4 0.∵直线与抛物线相交, k 0 且 0, 则k1.∵AB 中点横坐标为: x 1 x 2 4k 82 k 22,解得: k 2 或 k 1舍去).解法二: 设A(x 1,y 1)、B(x 2,y 2) ,则有 y 1 28x 12y28x 2 .两式作差解: ( y 1 y 2)(y 1 y 2) 8(x 1 x 2) ,即y 1 y 2 x 1x28 y 1 y 2x 1 x 2 4 y 1y 2 kx 1 2 kx 2 2 k( x 1 x 2) 4 4k 4 ,k 4k 8 4 故 k2或 k 1 (舍去).1MM 1AB ,故以 AB 为直径的圆,必与抛物线的准线相切.12说明:类似有: 以椭圆焦点弦为直径的圆与相对应的准线相离, 以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线 y 2 4x 被直线 y 2x k 截得的弦长为 3 5,求 k 值.为 9 时,求 P 点坐标.求 P 点坐标.k 2x 1 x 2 1 k, x 1 x 242 解:( 1)由 yy4x 2x 得: 4x 2 k2(4k 4)x k 2 0AB (1 22)( x 1 x 2)2 5( x 1 x 2)2 4x 1x 2 5 (1 k)2 k 2 5(1 2k)AB 3 5, 5(1 2k) 3 5 ,即 k 4 2)S 9 ,底边长为 3 5 ,∴三角形高 h 2 9 6 535 ∵点 P 在x 轴上,∴设 P 点坐标是 (x 0,0) 则点 P 到直线 y 2x 4的距离就等于 h ,即 0 2 2 22 12655x1或 x 0 5,即所求 P 点坐标是(- 1,0)或( 5,0).典型例题五MM 111 12( AA 1 BB 1) 12(AF2)以(1)中的弦为底边,以x 轴上的点 P 为顶点作三角形,当三角形的面积 分析:(1)题可利用弦长公式求 k ,(2)题可利用面积求高,再用点到直线距离设直线与抛物线交于 A (x 1,y 1)与B (x 2,y 2) 两点.则有:BF )范文 范例 指导 参考例5 已知定直线 l 及定点 A (A 不在 l 上),n 为过A 且垂直于 l 的直线,设 N 为 l 上任一点, AN 的垂直平分线交 n 于 B ,点 B 关于 AN 的对称点为 P ,求证 P 的轨迹为抛物线.分析:要证 P 的轨迹为抛物线, 有两个途径, 一个证明 P 点的轨迹符合抛物线的 定义,二是证明 P 的轨迹方程为抛物线的方程, 可先用第一种方法,由 A 为定点, l 为定直线,为我们提供了利用定义的信息,若能证明 PA PN 且 PN l 即可. 证明: 如图所示,连结 PA 、PN 、NB .由已知条件可知: PB 垂直平分 NA ,且 B 关于 AN 的对称点为 P . ∴ AN 也垂直平分 PB .则四边形 PABN 为菱形.即有 PA PN .AB l. PN l.则 P 点符合抛物线上点的条件:到定点 A 的距离与到定直线的距离相等,所以 P 点的轨迹为抛物线.典型例题六例6 若线段 P 1P 2为抛物线 C:y 2 2px(p 0)的一条 分析: 此题证的是距离问题,如果把它们用两点间 的距离表示出来,其计算量是很大的.我们可以用 抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:F(2p ,0),若过 F 的直线即线段 P 1P 2所在直线斜率不存在时,则有 P 1F P 2F p,111 1 2P 1F P 2F p p p焦点弦, F 为 C 的焦点,求证:1 12 P 1F P 2F p若线段P1P2 所在直线斜率存在时,设为k,则此直线为:y k(x 2p)(k 0) ,且设P1(x1,y1),P2(x2,y2) .k(x p )2得:k(x p )2 k2x2p(k22)xk2p24x 1 x22p(k 22)k2x 1 x 2根据抛物线定义有:P1 F x1 2p,P2F x12p , P1P2 x1 x2 p则 1 1 P1F P2F P1F P2 F P1F P2Fx1x2(x1 2p)(x2 2 )x2 p2p4x1x1x2 2p (x1 x2)1请将①②代入并化简得:112P1F P2F p证法二:如图所示,设P1、P2 、F点在C的准线l 上的射影分别是P1 、P2 、F ,且不妨设P2P2 n m P1P1 ,又设P2 点在FF P1P1 上的射影分别是A、B点,由抛物线定义知,P2 F n, P1F m, FF p又P2 AF ∽P2 BP1 ,AF P2 F BP1 P2P1p(m n ) 2mn 112 m n p即 AB 2psin 2故原命题成立.典型例题七例 7 设抛物线方程为 y 2 2px(p 0) ,过焦点 F 的弦 AB 的倾斜角为 焦点弦长为 AB 2 2p .sin分析: 此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题. 证法一: 抛物线 y 2 2px( p 0)的焦点为 (2p ,0), 过焦点的弦 AB 所在的直线方程为: y tan ( x 2p ) 由方程组 y tan (x 2p)消去 y 得: y 2 2 px2 2 2 2 24 x 2 tan 2 4 p(tan 2 ) p 2 tan 2,求证:x 1 x2设 A(x 1, y 1),B(x 2,y 2) ,则x1x2p(tan 22)tan 22p4p(1 2cot 2 )又 y 1 y 2 tan ( x 1 x 2 )AB (1 tan 2 )( x 1 x 2)2 (1 tan 2 ) (x 1 x 2) 2 4x 1x 2 (1 tan 2 ) p 2 (1 cot 2 ) 4 p4sec 2 4p 2 cot 2 (1 cot 2 )2p 2 sin1 4 sin证法二: 如图所示,分别作 AA 1、 BB 1垂直于准线 l .由抛物线定义有:AFAA 1 AF cos p BFBB 1pBF cos典型例题八例 8 已知圆锥曲线 C 经过定点 P (3,2 3) ,它的一个焦点为 F (1,0),对应于该 焦点的准线为 x 1,过焦点 F 任意作曲线 C 的弦 AB ,若弦 AB 的长度不超过 8, 且直线 AB 与椭圆 3x 2 2y 2 2 相交于不同的两点,求 ( 1) AB 的倾斜角 的取值范围.(2)设直线 AB 与椭圆相交于 C 、 D 两点,求 CD 中点 M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线 C 为抛物线, AB 为抛物线的焦点弦,设其 斜率为 k ,弦 AB 与椭圆相交于不同的两点, 可求出 k 的取值范围, 从而可得 的 取值范围,求 CD 中点 M 的轨迹方程时,可设出 M 的坐标,利用韦达定理化简即 可.于是可得出:AFp1 cosBFp1 cosABAF BFpp1 cos1 cos2p21 cos2p2sin故原命题成立.解:(1)由已知得PF 4 .故P到x 1 的距离 d 4 ,从而PF d ∴曲线C是抛物线,其方程为y24x .设直线AB的斜率为k,若k 不存在,则直线AB与3x2∴k 存在.设AB的方程为y k ( x 1)4 x 2可得:ky24 y 4k 0 k( x 1)2 y22 无交点.2 由y2y设A、B坐标分别为(x1,y1)、(x2, y2),则:y1y2y1y2 4AB12 (1 k2 )(y1y2)2 1k k2 (y1 y2)2 k4(1 k2 )4y1 y2 k2∵弦AB的长度不超过8,24(1 k 2)k28即k2由y2k(x21)得:(2k23x22 y223)x24k 2x 2(k21)∵AB与椭圆相交于不同的两点,k2由k21和k2 3可得: 1 k故1 tan 3 或 3 tan又0 ,∴所求的取值范围是:3或232) 设CD中点M ( x, y) 、C( x3, y3 )、D(x4,y4)由y2k(x21)得:(2k23)x24k2x3x22 y222(k 21) 0典型例题九例 9 定长为 3的线段 AB 的端点 A 、 B 在抛物线 y 2 x 上移动,求 AB 的中点到 y 轴的距离的最小值,并求出此时 AB 中点的坐标.分析: 线段 AB 中点到 y 轴距离的最小值,就是其横坐标的最小值.这是中点坐 标问题,因此只要研究 A 、 B 两点的横坐标之和取什么最小值即可.解:如图,设 F 是y 2 x 的焦点, A 、 B 两点到准线的垂线分别是 AC 、BD , 又M 到准线的垂线为 MN , C 、 D 和N 是垂足,则x34k 22, x 3 x 12k 232 x3 x 42k 2 2k 2 3 1 232k 2 3 k 2 322k 23 9x42(k 2 1) 2k 2 3则2 51 2k 21 2223即25yx12k 2 2k 2322 y 2 2 (x 1)2 22 y 22 ( x 1) 2化简得: 3x 2 2 y 2 3x∴所求轨迹方程为: 3x 22y 23x 0( 2 x 2) 531 3 1 设M 点的横坐标为 x ,纵坐标为 y , MN x ,则 x 42 4等式成立的条件是 AB 过点 F .2 2 21(y 1 y 2) y 1 y 2 2y 1y 2 2x 2 2,y 1 y 2 2 , y5 2 5 所以 M(54, 22) ,此时 M 到y 轴的距离的最小值为 45 .说明:本题从分析图形性质出发, 把三角形的性质应用到解析几何中, 解法较简.典型例题十例 10 过抛物线 y 2 px 的焦点 F 作倾斜角为 的直线,交抛物线于 A 、B 两点, 求 AB 的最小值.分析:本题可分 2 和 2两种情况讨论.当 2 时,先写出 AB 的表达式, 再求范围.解:(1) 若 2 ,此时 AB 2p .11 12( AC BD) 21( AFBF)12AB当x 45时, y 1y 2 P 214,故MN1AB :y tan (x 2p ),即 x ta y n说明:(2) 若 2 ,因有两交点,所以 0.代入抛物线方程,有 ta 2 3n p y tan p 2 0 .故 ( y 2 y 1 ) 2 4 p 2tan 2 4p 2 4p 2 csc( x 2 x 1) 2 ( y 2 y 1)2tan 2 22 csc4 p 2 2tan 故 AB 22 4 p csc (1 12 ) 4p 2 csc 4 tan 2所以 AB 2p 2 sin 2p .因 2 ,所以这里不能取“=” 综合(1)(2) ,当 2 时, AB 最小值 2p .(1) 此题须对 分 2 和 2两种情况进行讨论;的大小以及判定直线与圆是否相切.解:①点 A 在抛物线上,由抛物线定义,则 AA ' AF 1 2, 又 AA ' // x 轴 1 3 . ∴ 2 3,同理 4 6 , 而 2 3 6 4 180 ,∴ 3 6 90 ,∴ A 'FB ' 90 .选 C .②过AB 中点 M 作MM ' l ,垂中为 M ',∴以 AB 为直径的圆与直线 l 相切,切点为 M ' .又 F ' 在圆的外部,∴ AF 'B 90 . 特别地,当 AB x 轴时, M '与 F '重合, AF 'B 90 .即 AF 'B 90 ,选 B .典型例题十二例 12 已知点 M(3,2), F 为抛物线 y 2 2x 的焦点,点 P 在该抛物线上移动, 当 PM PF 取最小值时,点 P 的坐标为 __________ .分析: 本题若建立目标函数来求 PM PF 的最小值是困难的,若巧妙地利用抛则 MM1(AA ' BB ' ) 2 1 12( AF BF ) 1 AB 2物线定义,结合图形则问题不难解决.1 由定义知PF PE ,故PM PF PF PM ME MN 3 .取等号时,M 、P、E三点共线,∴ P点纵坐标为2,代入方程,求出其横坐标为2,所以P点坐标为(2, 2) .。
考点45 抛物线(解析版)
考点45 抛物线一.抛物线的定义平面内与一个定点F 和一条定直线l (点F 不在直线l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 二..抛物线的标准方程和几何性质标准方程y 2=2px (p >0) y 2=-2px (p>0)x2=2py (p >0) x 2=-2py (p >0)p 的几何意义焦点F 到准线l 的距离,焦点到顶点以及顶点到准线的距离均为p2.图形顶点 O (0,0)对称轴 x 轴y 轴焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程 x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左向上向下焦半径(其中P (x 0,y 0))|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2三.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0.知识理解(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.考向一 抛物线的定义【例1】(2021·陕西宝鸡市·高三二模(文))设抛物线C :24x y =的焦点为F ,准线l 与y 轴的交点为M ,P 是C 上一点,若5PF =,则PM =( )AB .5C.D【答案】D【解析】如图所示,过P 作PQ 垂直l ,交l 于Q ,不妨设()0(,)P x y x >,根据抛物线定义得152pPF PQ y y ==+=+=, 所以y =4,所以x =4,即(4,4)P , 所以4QM =,所以PM ===故选:D 【举一反三】考向分析1.(2021·山东烟台市·高三一模)已知F 为抛物线2:8C y x =的焦点,直线l 与C 交于,A B 两点,若AB 中点的横坐标为4,则 AF BF +=( ) A .8 B .10 C .12 D .16【答案】C【解析】抛物线2:8C y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,若AB 的中点的横坐标为4, 设1(A x ,1)y ,2(B x ,2)y ,128x x +=, 则12||||8412AF BF x x p +=++=+=. 故选:C .2.(2021·内蒙古高三月考(文))点F 为抛物线24y x =的焦点,点(2,1)A ,点P 为物线上与直线AF 不共线的一点,则APF 周长的最小值为( )A .3B .3C .4D .【答案】B【解析】根据题意,焦点()1,0F ,准线方程为:1x =-,过点P 作准线的垂线,垂足为P',过点A 作准线的垂线,垂足为'A ,且与抛物线交于点0P ,作出图像如图,故AF =,由抛物线的定义得:'PF PP =,则APF 周长为:''C PF PA PP PA AA +=+≥ 当且仅当点P 在点0P 处时,等号成立;因为'3AA =,'3C PF PA AA =+≥=+所以APF 周长的最小值为:3. 故选:B.3.(2021·全国高三专题练习(文))已知抛物线214y x =上的动点P 到直线l ∶3y =-的距离为d ,A 点坐标为(2,0),则||PA d +的最小值等于( )A .4B .2+C .D .3【答案】B【解析】如图所示,抛物线214y x =化为24x y =,可得焦点()0,1F ,准线方程为1y =-, 可得动点P 到直线l ∶3y =-的距离为22d PE PF =+=+,又由PF PA FA +≥22PA d PA PF +=++≥.所以PA d 的最小值等于2.故选: B.4.(2021·浙江杭州市·学军中学)已知拋物线2y mx =的焦点坐标F 为()2,0,则m 的值为___________;若点P 在抛物线上,点()5,3,A 则PA PF +的最小值为___________. 【答案】8 7【解析】拋物线2y mx =的焦点坐标F 为()2,0,则24m=,解得8m =; 抛物线28y x =的准线方程为2x =-,过P 作直线2x =-的垂线,垂足为C ,PA PF PA PC AC +=+≥,当,,A P C 三点共线时,PA PF +取得最小值,且()527AC =--=故答案为:8;7.考向二 抛物线的标准方程【例2-1】(2021·全国单元测试)顶点在原点,关于y 轴对称,并且经过点M (-4,5)的抛物线方程为( )A .y 2=165x B .y 2=-165x C .x 2=165yD .x 2=-165y【答案】C【解析】由题设知,抛物线开口向上,设方程为x 2=2py (p >0),将(-4,5)代入得8,5p =所以,抛物线方程为2165x y =.故选:C . 【例2-2】(2021·浙江)已知抛物线C 的焦点()1,0F ,则拋物线C 的标准方程为___________,焦点到准线的距离为___________. 【答案】24y x = 2【解析】根据抛物线C 的焦点()1,0F ,设抛物线方程22y px =,12p=,则2p =,故抛物线方程24y x =;抛物线中,焦点到准线的距离为p ,2p =,即距离为2.故答案为:24y x =;2. 【举一反三】1.(2021·全国课时练习)以x 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .28y x =B .28y x =- C .28y x =或28y x =-D .28x y =或28xy【答案】C【解析】设抛物线方程为22y px =或22y px =-, 依题意得2p x =,代入22y px =或22y px =-得y p =, 22=8y p ∴=,4p =.∴抛物线方程为28y x =或28y x =-,故选:C.2.(2021·山东德州市·高二期末)抛物线2y ax =的焦点是直线4810x y +-=与坐标轴的交点,则该抛物线的准线方程是( ) A .14x =-B .18y =C .18y =-D .14x =【答案】C【解析】由2y ax =可知抛物线开口向上或向下, 4810x y +-=,令10,8=∴=x y ,焦点坐标为11(0,),828∴=p 准线为18y =- 故选:C3.(2021·绵阳南山中学实验学校(文))顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程是( ) A .23x y =±B .26y x =±C .212x y =± D .26x y =±【答案】C【解析】由抛物线的顶点在原点,对称轴是y 轴,设抛物线的方程为22(0)x my m =≠, 因为顶点与焦点的距离等于3,可得32m=,解得12m =±, 所以所求抛物线的方程为212x y =±. 故选:C.4(2021·广东湛江市·高三一模)已知抛物线C :x 2=-2py (p >0)的焦点为F ,点M 是C 上的一点,M 到直线y =2p 的距离是M 到C 的准线距离的2倍,且|MF |=6,则p =( )A .4B .6C .8D .10【答案】A 【解析】设()00,M x y ,则0026262p y p y -=⨯⎧⎪⎨-=⎪⎩,解得4p =故选:A考向三 抛物线的几何性质【例3】(2021·江苏省天一中学高三二模)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,则|AB |=________. 【答案】8【解析】抛物线y 2=4x 中,2p =,焦点F (1,0),而直线AB 过焦点F (1,0),故根据抛物线定义可知121262822p p p AB AF FB x x x x ⎛⎫⎛⎫=+=+++++ ⎪ ⎪⎝⎭⎝⎭+===. 故答案为:8.【举一反三】1.(2021·四川遂宁市·高三二模(文))若过抛物线C :24y x =的焦点且斜率为2的直线与C 交于A ,B 两点,则线段AB 的长为( )A .3.B .4C .5D .6【答案】C【解析】抛物线C :24y x =的焦点(1,0)F 所以直线AB 的方程为22y x =-, 设()11,A x y ,()22,B x y , 由2224y x y x=-⎧⎨=⎩,消去y 并整理得2310x x -+=, 所以123x x +=,1225AB x x =++=. 故选:C.2.(2021·广西玉林市·高三其他模拟(理))已知抛物线2:2(0)C x py p =>的焦点在直线10x y +-=上,又经过抛物线C 的焦点且倾斜角为60︒的直线交抛物线C 于A 、B 两点,则||AB =( ) A .12 B .14 C .16 D .18【答案】C【解析】因为直线10x y +-=与y 轴的交点为(0,1),所以抛物线2:2(0)C x py p =>的焦点坐标为(0,1),设(0,1)F ,抛物线方程为24x y =, 所以过焦点且倾斜角为60︒的直线方程为1y =+, 设1122(,),(,)A x y B x y ,由241x y y ⎧=⎪⎨=+⎪⎩,得21410y y -+=, 所以1214y y +=,所以12||14216AB y y p =++=+=, 故选:C3.(2021·商丘市第一高级中学)设F 为抛物线22(0)y px p =>的焦点,过F 作倾斜角为60︒的直线与该抛物线交于,A B 两点,且3,OA OB O ⋅=-为坐标原点,则AOB 的面积为( )ABCD【答案】A【解析】由题意得焦点坐标为(,0)2p,则直线的方程为)2py x =-,设1122(,),(,)A x y B x y ,直线与曲线联立2)22p y x y px ⎧=-⎪⎨⎪=⎩,可得2233504x px p -+=,222325431604p p p ∆=-⨯⨯=>,212125,34p p x x x x +==,2212121212))3()2224p p p p y y x x x x x x p ⎡⎤=--=-++=-⎢⎥⎣⎦又221212()34p x x y y p OA OB +⋅=+-==-,解得24p =,又0p >,所以2p =,所以1251633p AB x x p p =++=+=,直线方程为y =0y -=,所以原点O0y -=的距离2d ==,所以AOB的面积1116223S AB d =⨯⨯=⨯=. 故选:A.1.(2021·四川高三月考(理))设O 为坐标原点,直线l 过定点()1,0,与抛物线()2:20C y px p =>交于,A B 两点,若OA OB ⊥,则抛物线C 的准线方程为( ) A .14x =-B .12x =-C .1x =-D .2x =-【答案】A【解析】由题意可知直线l 斜率不为0.强化练习设直线:1l x my =+与22y px =联立. 得22200,y pmy p --=>恒成立. 设()()1122,,A x y B x y ,则122y y p =-. 由,OA OB ⊥得12120x x y y +=,即221212022y y y y p p ⋅+=. 即224204p p p-=. 得12p =. 所以其准线方程为14x =-故选:A.2.(2021·北京丰台区·高三一模)P 为抛物线22(0)y px p =>上一点,点P 到抛物线准线和对称轴的距离分别为10和6,则p =( ) A .2 B .4C .4或9D .2或18【答案】D【解析】由题意可得:抛物线22(0)y px p =>的准线l 的方程为:2px =- 设点(,)P x y ,又因点P 到抛物线准线和对称轴的距离分别为10和6,所以有210262p x y y px⎧+=⎪⎪=±⎨⎪=⎪⎩,解得118x p =⎧⎨=⎩或92x p =⎧⎨=⎩,即p 的值分别为18或2. 故选:D.3.(2021·河南高三其他模拟(文))已知点P 为抛物线24x y =上任意一点,点A 是圆()22:65C x y +-=上任意一点,则PA 的最小值为( ) A.6BC.D.【答案】B【解析】设2,4x P x ⎛⎫⎪⎝⎭,则222264x PC x ⎛⎫=+- ⎪⎝⎭,4223616x x =-+, ()221162016x =-+, 当216x =时,min PC =所以min PA =故选:B4.(2021·浙江高三其他模拟)已知点()()1,1P a a >在抛物线()220y px p =>上,过P 作圆()2211x y -+=的两条切线,分别交抛物线于点A ,B ,若直线AB 的斜率为1-,则抛物线的方程为( ) A .24y x = B .22y x =C .2y x =D .24xy =【答案】A【解析】由题意可知过P 所作圆的两条切线关于直线1x =对称,所以0PA PB k k +=, 设()11,A x y ,()22,B x y ,(),P P P x y ,则1122111222P P PA P P P y y y y pk y y x x y y p p--===-+-, 同理可得22PB P pk y y =+,122AB p k y y =+,则12220P P p p y y y y +=++,得()()()1221220P P P y y y y p y y y ++=++,得122P y y y +=-, 所以122212AB Pp pk y y y ===-+-,故P y p =, 将()1,p 代入抛物线方程,得221p p =⋅,得2p =,故抛物线方程为24y x =.故选:A5.(2021·吉林长春市·高三二模(理))已知抛物线()220y px p =>上一点()02,A y ,F 为焦点,直线FA 交抛物线的准线于点M ,满足2,FA AM =则抛物线方程为( )A .28y x = B .216y x =C .224y x =D .232y x =【答案】C【解析】如图所示:作AB x ⊥轴,则//AB MK , 因为2FA AM =,且()02,A y ,所以212222P AF BF P AM BK -===+, 即22222p p ⎛⎫-=+⎪⎝⎭,解得12p =,所以抛物线方程是224y x = 故选:C .6.(2021·四川成都市·石室中学高三月考(理))已知双曲线22881x y -=-有一个焦点在抛物线C :()220x py p =>准线上,则p 的值为( )A .2B .1C .12D .14【答案】B【解析】双曲线标准方程是2211188y x -=,2218a b ==,22214c a b =+=,12c =,焦点为1(0,)2±, 所以122p =,1p =. 故选:B .7.(2021·辽宁丹东市·高三月考)倾斜角为45°的直线经过点(2,0)M ,且与抛物线C :24y x =交于A ,B 两点,若F 为C 的焦点,则AF BF +=( )A .5B .8C .10D .12【答案】C【解析】由题可知直线AB 的方程为2y x =-,设()()1122,,,A x y B x y , 所以由焦半径公式得:121,1AF x BF x =+=+,所以联立方程224y x y x ⎧⎨=-=⎩得:2840x x -+=,6416480∆=-=>,所以12128,4x x x x +==, 所以12210AF BF x x +=++=. 故选:C.8.(2021·广西南宁市·高三一模(文))已知抛物线()2:20C x py p =>的焦点为圆()2212x y +-=的圆心,又经过抛物线C 的焦点且倾斜角为60°的直线交抛物线C 于A 、B 两点,则AB =( ) A .12 B .14C .16D .18【答案】C【解析】由题可得抛物线焦点为()0,1,则12p=,即2p =,则抛物线方程为24x y =, 直线AB 的倾斜角为60,故直线AB的方程为1y =+,联立直线与抛物线241x yy ⎧=⎪⎨=+⎪⎩可得240x --=,设()()1122,,,A x y B x y,则12124x x x x +==-,则16AB ==.故选:C.9.(多选)(2021·广东广州市·高三一模)已知点O 为坐标原点,直线1y x =-与抛物线2:4C y x =相交于,A B 两点,则( ) A .||8AB =B .OA OB ⊥C .AOB 的面积为D .线段AB 的中点到直线0x =的距离为2【答案】AC【解析】设()()1122,,,A x y B x y ,抛物线2:4C y x =,则2P = ,焦点为()1,0,则直线1y x =-过焦点;联立方程组214y x y x=-⎧⎨=⎩ 消去y 得2610x x -+=, 则12126,1x x x x +==, ()()()121212121114y y x x x x x x =--=-++=-所以12628AB x x P =++=+= ,故A 正确;由12121430OA OB x x y y ⋅=+=-=-≠,所以OA 与OB 不垂直,B 错;原点到直线1y x =-的距离为d ==,所以AOB 的面积为11822S d AB =⨯⨯==,则C 正确;因为线段AB 的中点到直线0x =的距离为126322x x +==,故D 错 故选:AC10(2021·湖北高三月考)已知点M 在抛物线C :24y x =上运动,圆C '过点()5,0,(,()3,2-,过点M 引直线1l ,2l 与圆C '相切,切点分别为P ,Q ,则PQ 的取值范围为__________.【答案】)4⎡⎣ 【【解析】设圆C '的方程为220x y Dx Ey F ++++=,将()5,0,(,()3,2-分别代入,可得255072013320D F D F DEF ++=⎧⎪+++=⎨⎪+-+=⎩,解得605D E F =-⎧⎪=⎨⎪=⎩,即圆C ':()2234x y -+=; 如图,连接MC ',C P ',C Q ',PQ ,易得C P MP '⊥,C Q MQ '⊥,MC PQ '⊥, 所以四边形MPC Q '的面积为12MC PQ '⋅; 另外四边形MPC Q '的面积为MPC '面积的两倍,所以12MC PQ MP C P '⋅=⋅', 故2MP C P Q C P M =⋅'='= 故当C M '最小时,PQ 最小, 设(),M x y ,则MC '=,所以当1x =时,min MC '=x 正无穷大时,PQ 趋近圆的直径4,故PQ 的取值范围为)4⎡⎣. 故答案为:)4⎡⎣11.(2021·江西高三其他模拟(理))已知离心率为2的双曲线1C :()222210,0x y a b a b-=>>的右焦点F与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,M 是1C 与2C 的公共点,若5MF=,则1C 的标准方程为______.【答案】2213y x -=【解析】22,ce c a b a==⇒==,(2,0)F a 所以双曲线方程为:222213x y a a-=2282pa p a =⇒=,设抛物线方程为: 28y ax = 联立方程可得:2222223338308x y a x ax a y ax⎧-=⇒--=⎨=⎩ 解得81036a a x a ±==或3a-(舍) 3325512pMF a a a a a ∴=+=+==⇒=所以双曲线方程为:2213y x -=故答案为:2213y x -=12.(2021·浙江)抛物线28y x =焦点为F ,P 为抛物线线上的动点,定点(3,2)A ,则||||PA PF +的最小值为_________. 【答案】5【解析】准线为2x =-,过P 作准线l 的垂线PM ,垂足为M ,则PM PF =,所以PF PA PM PA +=+,易知当,,M P A 三点共线时PM PA +取得最小值为3(2)5--=, 故答案为:5.13.(2021·广东肇庆市·高三二模)已知点P 是抛物线28x y =上的一个动点,则点P 到点()2,0A 的距离与到抛物线的准线的距离之和的最小值为___________.【答案】【解析】设点P 在抛物线的准线的投影为点P ',抛物线的焦点为F ,则()0,2F . 依抛物线的定义,知点P 到该抛物线的准线的距离为PP PF '=, 则点P 到点()2,0A 的距离与到该抛物线的准线的距离之和d PA PF AF ===+≥.故答案为:14.(2021·河北张家口市·高三一模)若(4,1)P 为抛物线2:2(0)C x py p =>上一点,抛物线C 的焦点为F ,则||PF =________.【答案】5【解析】由(4,1)P 为抛物线2:2(0)C x py p =>上一点,得2421p =⨯,可得8p =,则8||152PF =+=. 故答案为:515.(2021·全国高三其他模拟)已知抛物线22(0)y px p =>,点(1,)(1)P a a >在抛物线上,过P 作圆22(1)1x y -+=的两条切线,分别交抛物线于点A ,B ,若直线AB 的斜率为-1,则抛物线的方程为______.【答案】24y x =【解析】由题意可知,过P 所作圆的两条切线关于直线1x =对称. 设()11,A x y ,()22,B x y ,(),P P P x y ,则1122111222P P PA P P P y y y y pk y y x x y y p p--===-+-, 同理22PB P pk y y =+,122AB p k y y =+,因为两条切线关于直线1x =对称,所以0PA PB k k +=,即12220P P p py y y y +=++,得()()()1212220p P P p y y y y y y y ++=++, 得122p y y y +=-,所以122212AB Pp pk y y y ===-+-, 故P y p =,(1,)P p ,代入抛物线方程,得221p p =⋅,所以2p =,故抛物线方程为24y x =.故答案为:24y x =16.(2021·桃江县第一中学)已知拋物线()2:20M y px p =>的焦点为F ,O 为坐标原点,M 的准线为l且与x 轴相交于点B ,A 为M 上的一点,直线AO 与直线l 相交于C 点,若BOC BCF ∠=∠,6AF =,则M 的标准方程为______________. 【答案】28y x =【解析】因为BOC BCF ∠=∠,90OBC CBF ∠=∠=︒,所以~OBC CBF △△,则OB CBBC BF=,如图,,2pOB BF p ==,故2pCB BC p=,解得2BC p =,所以2tan tan 12pAOF COB p ∠=∠==OA,OA的方程y =,联立直线OA与抛物线方程22y y px ⎧=⎪⎨=⎪⎩,解得()A p ,所以3622A p p AF x =+==, 故4p =,则抛物线标准方程为28y x =.故答案为:28y x =.17.(2021·黑龙江哈尔滨市·哈尔滨三中高三一模(理))人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴,探照灯、手电筒就是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线经抛物线上第一象限内的一点P反射后的光线所在直线方程为y =,若入射光线FP的斜率为______. 【答案】22y x =【解析】从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为y, 可得P (1p),入射光线FP的斜率为所以012p p =-p =1或p =﹣2(舍去),所以抛物线方程为:y 2=2x . 故答案为:y 2=2x18.(2021·贵溪市实验中学)若抛物线22(0)y px p =>上的点()0,3A x -到其焦点的距离是A 到y 轴距离的2倍,则p 等于___________. 【答案】3【解析】由题意,得0022p x x =+,解得02px =, 即,32p A ⎛⎫-⎪⎝⎭,代入22(0)y px p =>,得2(3)22p p -=⋅,结合0p >,解得3p =故答案为:319.(2021·江苏南通市)已知抛物线2:4C y x =,过焦点F 且斜率为1的直线与C 相交于P 、Q 两点,且P 、Q 两点在准线上的投影分别为M ,N 两点,则MFN △的面积为________.【答案】【解析】抛物线C :24y x =则焦点坐标为()1,0F ,准线方程为1x =-过焦点F 且斜率为1的直线方程为1y x =-,化简可得1x y =+抛物线C 与直线相交于P ,Q 两点,设()()1122,,,P x y Q x y 且P ,Q 两点在准线上的投影分别为M ,N 则214x y y x=+⎧⎨=⎩,化简可得2440y y --= 所以12124,4y y y y +=⋅=-则12MN y y =-===所以122MFNS=⨯=故答案为:20.(2021·全国高三其他模拟)已知抛物线()2:20C y px p =>经过点()3,6,直线l 经过点()2,2M且与抛物线C 交于A ,B 两点.若线段AB 的中点为M ,F 为抛物线C 的焦点,则ABF 的周长为______.【答案】103+【解析】把点()3,6代入22y px =中得6p,故抛物线C 的方程为212y x =.设()11,A x y ,()22,B x y ,由题意可知直线l 的斜率存在且不为0,故12x x ≠. 则21112y x =,22212y x =,两式相减得()()()12121212y y y y x x +-=-,又因为AB 的中点为()2,2M,所以124y y +=,将124y y +=代入上式得直线l 的斜率3k =, 于是直线AB 的方程为()232y x -=-,即34y x =-.联立212,34,y x yx ⎧=⎨=-⎩消去y 得2936160x x -+=,0∆>,由根与系数的关系得124x x +=,12169x x =, 由抛物线的定义得124610AF BF x x p +=++=+=,而AB =3==,因此ABF 的周长为103+.故答案为:1021(2021·陕西安康市)已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4.(1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积.【答案】(1)28x y =;(2)【解析】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =,所以抛物线C 的方程为28x y =;(2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=,设()11,A x y ,()22,B x y ,由228y x x y =+⎧⎨=⎩消去x ,整理得21240y y -+=,则1212y y +=,因此1212416AB AF BF y y p =+=++=+=,又点O 到直线20x y -+=的距离为d ==,所以OAB 的面积为12OAB S AB d ==. 22.(2021·湖北开学考试)已知抛物线2:2C y px =的焦点为F ,(1,)M t 为抛物线C 上的点,且3||2MF =.(1)求抛物线C 的方程;(2)若直线2y x =-与抛物线C 相交于A ,B 两点,求弦长||AB .【答案】(1)22y x =;(2).【解析】(1)3||122PMF =+=,所以1p =,即抛物线C 的方程22y x =.(2)设()()1122,,,A x y B x y ,由222y xy x ⎧=⎨=-⎩得2640x x -+=所以126x x +=,124x x =所以12||AB x =-===.23.(2020·江苏)求适合下列条件的曲线的标准方程:(1)4,1a b ==,焦点在x 轴上的椭圆的标准方程;(2)4,3a b ==,焦点在y 轴上的双曲线的标准方程;(3)焦点在x 轴上,且焦点到准线的距离是2的抛物线的标准方程.【答案】(1)22116x y +=;(2)2211625y x -=;(3)24x y =或24x y =-.【解析】(1)根据题意知4,1a b ==,焦点在x 轴上,∴2216,1a b ==,故椭圆的标准方程为:221161x y +=,即22116x y +=.(2)解:由题意,设方程为()222210,0y x a b a b -=>>,∵4,5a b ==,∴2216,25a b ==, 所以双曲线的标准方程是2211625y x -=.(3)∵焦点到准线的距离是2,∴24p =,∴当焦点在y 轴上时,抛物线的标准方程为24x y =或24x y =-.24.(2021·内蒙古包头市)A 、B 是抛物线24y x =上两个不同的点,A 、B 纵坐标之和为4.(1)求直线AB 的斜率;(2)O 为原点,若OA OB ⊥,求直线AB 的方程.【答案】(1)1;(2)y x =或4y x =-.【解析】(1)法一:设()11,A x y ,()22,B x y ,则2112224,4,y x y x ⎧=⎨=⎩两式相减得()()()1212124y y y y x x +-=-.∵124y y +=,∴()()121244y y x x -=-.根据题意可知12x x ≠,∴12121AB y y k x x -==-,∴直线AB 的斜率为1.法二:据题意直线AB 斜率存在,可设直线AB 的方程为y kx m =+,与24y x =联立得204km y y -+=,则1244y y k +==,∴1k =,∴直线AB 的斜率为1.(2)由(1)得,124y y +=,124y y m ⋅=,由题意,0OA OB ⋅=,即()221212121214016x x y y y y y y m m +=+=+=,解得,0m =或4m =-.所以,直线AB 的方程为y x =或4y x =-.25.(2021·广西玉林市)已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF△的面积为212p (O 为坐标原点).(1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.【答案】(1)24y x =;(2)114y x =-+.【解析】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =.(2)设()11,M x y ,()22,N x y .联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=.由题意可知0k ≠,则12224k x x k -+=-,1221x x k =.因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=,则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-.故直线l 的方程为114y x =-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名学生姓名填写时间
学科数学年级高三教材版本人教版阶段第( 3 )周观察期:□维护期:□
课题名称抛物线课时计划
第()课时
共()课时
上课时间
教学目标大纲教学目标
1、使学生掌握抛物线的定义和标准方程,以及标准方程的推导
2、理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导出
这些性质,并能具体估计抛物线的形状特征.
个性化教学目标
会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法
教学重点1、抛物线的定义和双曲线的标准方程
2、抛物线的几何性质及初步运用.
教学难点1、抛物线的标准方程的推导.
2、抛物线的渐近线方程的导出和论证及双曲线的渐近线的证明.
教学过程一、抛物线的概念
平面内与一个定点F和一条定直线l(l不过F)的距离的点的集合叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的.
抛物线的方程
抛物线y 2=2px (p >0)的焦点弦(过焦点的弦)为AB ,A (x 1,y 1),B (x 2,y 2),则有如下结论:
①|AB |=x 1+x 2+p ;②y 1y 2
=-p 2
; ③x 1·x 2=
自主练习:
1.(2010·四川文)抛物线y 2
=8x 的焦点到准线的距离是( )
A .1
B .2
C .4
D .8
2.(2010·辽宁理)设抛物线y 2
=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )
A .4 3
B .8
C .8 3
D .16
3.(2009·山东)设斜率为2的直线l 过抛物线y 2
=ax (a ≠0)的焦点F ,且和y 轴交于点A .若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )
A .y 2=±4x
B .y 2=±8x
C .y 2=4x
D .y 2=8x
4.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )
A .相交
B .相切
C .相离
D .以上三种情形都有可能
5.(2010·重庆)已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=______.
6.(2009·海南宁夏文)已知抛物线C 的顶点在坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A 、B 两点.若P (2,2)为AB 的中点,则抛物线C 的方程为________. 7.已知点A (0,-2),B (0,4),动点P (x ,y )满足PA →·PB →=y 2-8.
(1)求动点P 的轨迹方程;
(2)设(1)中所求轨迹方程与直线y =x +2交于C ,D 两点,求证:OC ⊥OD (O 为原点).
题型分析
[例1]已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标.
跟踪练习:若例题中点A的坐标变为(2,3),求|PA|+|PF|的最小值.
[例2]根据下列条件求抛物线的标准方程.
(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4);
(3)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.
跟踪练习:如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.
[例3] 已知AB 是抛物线y 2
=2px (p >0)的焦点弦,F 为抛物线焦点,A (x 1,y 1)、B (x 2,y 2),
求证:
(1)x 1·x 2=p 24; (2)|AB |=x 1+x 2+p =2p
sin 2θ
(θ为直线AB 与x 轴的夹角);
(3)S △AOB =p 22sin θ; (4)1|AF |+1
|BF |为定值; (5)以AB 为直径的圆与抛物线准线相切.
跟踪练习:设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
[例4]如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(1)求证:A,M,B三点的横坐标成等差数列;
(2)已知当M点的坐标为(2,-2p)时,|AB|=410.求此时抛物线的方程.
跟踪练习:已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点. (1)求证:OA ⊥OB ; (2)当△OAB 的面积等于10时,求k 的值.
一、选择题
1.(2010·湖南)设抛物线y 2
=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )
A .4
B .6
C .8
D .12
2.(2010·陕西理)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )
A.12
B .1
C .2
D .4
3.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )
A .有且仅有一条
B .有且仅有两条
C .有无穷多条
D .不存在
4.(2009·天津理)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线交于A ,B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF
S △ACF
=( )
A.45
B.23
C.47
D.1
2
5.(2009·全国Ⅱ理)已知直线y =k (x +2)(k >0)与抛物线C :y 2
=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k =( )
A.13
B.
23 C.23 D.223
当堂练习
6.(2008·宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )
A.⎝⎛⎭⎫14,-1
B.⎝⎛⎭⎫14,1 C .(1,2)
D .(1,-2)
7.抛物线y 2
=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方部分相交于点A ,AK ⊥l ,垂足为K ,则ΔAKF 的面积是( )
A .4
B .3 3
C .4 3
D .8
8.对于任意n ∈N *,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n 、B n 两点,以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|+…+|A 2012B 2012|的值是( )
A.2010
2011
B.
20112012 C.2011
2013
D.2009
2010
二、填空题
9.(2010·重庆理)已知以F 为焦点的抛物线y 2
=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.
10.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米,当水面升高1米后,水面宽度是______米.
11.设P 是抛物线y =x 2上的点,若P 点到直线2x -y -4=0的距离最小,则P 点的坐标为________. 三、解答题
13.P 是抛物线y 2=4x 上的一个动点.
(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.
14.(2010·福建文)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;
(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于
5
5
?若存在,求出直线l 的方程;若不存在,说明理由.
15.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →. (1)当点P 在y 轴上运动时,求N 点的轨迹C 的方程;
(2)设A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)是曲线C 上的三点,且|AF →|、|BF →|、|DF →
|成等差数列,当AD 的垂直平分线与x 轴交于E (3,0)时,求B 点的坐标.
课后作业
课 后 记
本节课教学计划完成情况:照常完成□ 提前完成□ 延后完成□ 学生的接受程度:完全能接受□ 部分能接受□ 不能接受□ 学生的课堂表现:很积极□ 比较积极□ 一般□ 不积极□ 学生上次的作业完成情况:数量 % 完成质量 分 存在问题 备注
班主任签字
家长或学生签字
教研主任审批。