数学模型习题
数学建模习题
数学建模习题1.木材采购问题一个木材贮运公司,有很大的仓库,用于贮运出售木材。
由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分贮存起来以后出售。
已知:该公司仓库的最大贮藏量为20万立方米,贮藏费用为:(a+bu )元/万立方米,其中:a=70,b=100,u 为贮存时间(季度数)。
已知每季度的买进、卖出价及预计的销售量为:由于木材不易久贮,所有库贮木材于每年秋季售完。
确定最优采购计划。
2.飞机投放炸弹问题某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油耗量限制为48000公升,重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每公升汽油可飞行2公里,带轻型炸弹时每公汽油可飞行3公里。
又知每架飞机一次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每公升汽油飞行4公里)外。
3.三级火箭发射问题建立一个模型说明要用三级火箭发射人造卫星的道理。
(1) 设卫星绕地球作匀速圆周运动,证明其速度为v=r g R ;,R 为地球半径,r 为卫星与地心距离,g 为地球表面重力加速度。
要把卫星送上离地面600km 的轨道,火箭末速v 应为多少。
(2) 设火箭飞行中速度为v (t ),质量为m (t ),初速为零,初始质量0m ,火箭喷出的气体相对于火箭的速度为u ,忽视重力和阻力对火箭的影响。
用动量守恒原理证明v (t )=)(ln 0t m mu 。
由此你认为要提高火箭的末速度应采取什么措施。
(3) 火箭质量包括3部分:有效载荷(卫星)p m ;燃料f m ;结构(外壳、燃料仓等)s m ,其中s m 在f m +s m 中的比例记作λ,一般λ不小于10%。
证明若p m =0(即火箭不带卫星),则燃料用完时火箭达到的最大速度为m ν=-λln u .已知目前的u=3km/s ,取λ=10%,求m ν。
这个结果说明什么。
数学建模习题集及标准答案
3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益
初二上数学模型练习题
初二上数学模型练习题模型一:文字叙述模型题目:小明买了一部手机,规定水平放置时,手机的长度是手机宽度的2倍,手机立放时,手机的高度是手机长度的3倍,宽度是长度的2倍。
问手机的体积是多少?解析:根据手机的规定,可以设手机长度为x,则宽度为2x,高度为3x。
解答:手机的体积 = 长度 ×宽度 ×高度= x × 2x × 3x= 6x^3所以,手机的体积是6x^3。
模型二:图表模型题目:某班级共有50名学生,学生的身高和体重的关系如下图所示。
根据图表,判断以下说法是否正确,并说明理由。
说法1:身高和体重成正比例关系。
说法2:身高是体重的平方根倍数。
解析:根据题目的图表,我们可以观察到身高和体重之间的变化规律。
解答:说法1:身高和体重成正比例关系。
不正确。
根据图表可以看出,身高变化的幅度较小,而体重变化的幅度较大,因此身高和体重并不成正比例关系。
说法2:身高是体重的平方根倍数。
不正确。
由于身高变化的幅度较小,而体重变化的幅度较大,因此身高并不是体重的平方根倍数。
综上所述,以上两个说法都是不正确的。
模型三:实际应用模型题目:某市区的电费计算方式如下:月用电量低于100度时,电费按照每度0.8元计算;月用电量大于等于100度时,超过100度的部分按照每度1元计算。
某家庭上个月的用电量为120度,请计算该家庭上个月的电费。
解析:根据题目的描述,我们需要计算不同用电量下的电费。
解答:若用电量为120度,则超过100度的部分为120-100=20度。
总电费 = 100 × 0.8 + 20 × 1= 80 + 20= 100元所以,该家庭上个月的电费为100元。
模型四:实验模型题目:对一个均匀的实心球,已知其半径为5厘米,现要求测量该实心球的质量。
请设计一个实验来完成这个任务,并详细描述实验步骤。
解析:根据题目的要求,我们需要设计一个实验来测量实心球的质量。
数学建模习题
数学建模练习题1.1.线性规划题目问题1:毛坯切割问题用长度为500厘米的材料,分别截成长度为98厘米和78厘米的两种毛坯,要求截出长度98厘米的毛坯1000根,78厘米的毛坯2000根,问怎样去截,才能是所用的原材料最少,试建立数学模型。
问题2:进货收获问题某商店你制定某种商品7-12月的进货、售货计划,已知商品仓库最大容量为1500件,6月底已经库存300件,年底不少于300件为宜,以后每月初进货一次,假设各月份该商品买进和售出的价格如下表所示,若每件每月库存费为0.5元,问各月进货,售货多少件,才能是净收益最多。
试建立数学模型。
问题3:货船装货问题某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500,准备装6中货物,每种货物的单价、重量、体积和可燃性指数如下表:1.2.微分方程题目问题1. 什么时候开始下雪?早晨开始下雪,整天稳降不停。
正午一辆扫雪车开始扫雪,每小时扫雪量按体积计为一常数。
到下午2时它清扫了两公里,到下午4时又清扫了1公里,问雪是什么时候开始下的?问题2. 谁喝的咖啡热一些?总统与首相面前同时送上同温度的热咖啡。
总统在送到咖啡后立即加上一点冷奶油,等了10分钟才喝;首相则等了10分钟后添加等量的冷奶油开始喝,问谁喝的咖啡热一些?问题3. 需冷却多久?一位稀里糊涂的咖啡泡煮师,想让水达到185o F,可他几乎总是忘记这一点而把水煮开。
温度计又坏了,他要你计算一下,从212o F冷却到185o F要等多少时间,你能解决他的问题吗?问题4. 纽约的人口如果不考虑移民与高杀人率,纽约城的人口将满足方程,其中t 以年度量。
(1)事实上,每年有6000人从该城迁出,又有4000人被杀,试修正上面方程。
(2)已知1970年纽约城人口为800万,求未来任何时刻的人口,且求时的极限。
问题5.开火的最优距离A 方反坦克导弹与B 方坦克之间进行战斗。
数学模型第五章练习题
数学模型第五章练习题一、基础题1. 已知函数f(x) = 3x^2 4x + 1,求f(2)的值。
2. 若直线y = kx + b经过点(1, 3)和点(3, 7),求k和b的值。
3. 解方程组:2x + 3y = 8,x y = 1。
4. 求下列函数的定义域:f(x) = √(x^2 5x + 6)。
5. 已知等差数列的前三项分别为1、3、5,求第10项的值。
二、应用题1. 某企业生产一种产品,固定成本为10000元,每生产一件产品可变成本为200元。
若产品售价为500元,求该企业至少生产多少件产品才能盈利。
2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,因故减速至40km/h,继续行驶了3小时。
求汽车行驶的总路程。
3. 某商品进价为1000元,售价为1500元,若商家进行8折优惠,求优惠后的利润。
4. 一根绳子长20米,将其折成相等的四段,每段绳子再对折一次。
求对折后的绳子长度。
5. 某班级有男生30人,女生20人,从中随机抽取5人参加比赛。
求抽取到3名男生和2名女生的概率。
三、综合题1. 已知函数f(x) = x^3 6x^2 + 9x,求f(x)的单调区间。
2. 设平面直角坐标系中,点A(2, 3),点B在x轴上,且AB = 5,求点B的坐标。
3. 某企业生产两种产品,产品A的利润为100元/件,产品B的利润为200元/件。
若企业每月固定成本为5000元,生产A、B产品的可变成本分别为50元/件和100元/件,求企业每月至少生产多少件A、B产品才能盈利。
4. 已知等比数列的前三项分别为2、6、18,求第6项的值。
5. 在一个等边三角形中,边长为10cm,求三角形的高。
四、拓展题1. 已知函数f(x) = e^x 2x,求f(x)的极值。
2. 设平面直角坐标系中,直线y = kx + b与圆(x 1)^2 + (y +2)^2 = 16相切,求k和b的值。
3. 某企业生产三种产品,产品A、B、C的利润分别为100元/件、200元/件和300元/件。
初中数学数学模型应用练习题及参考答案
初中数学数学模型应用练习题及参考答案1. 题目:小明每天骑自行车上学,上一次维修后他发现,每骑行1公里需要250个脚蹬。
如果小明骑行8公里,脚蹬的总脚程是多少个?答案:小明骑行8公里,脚蹬的总脚程为8公里 × 250个脚蹬 = 2000个脚蹬。
2. 题目:甲、乙两个人合作修建一座墙,甲每小时砌砖75块,乙每小时砌砖60块。
如果他们合作8小时,共砌砖多少块?答案:甲每小时砌砖75块,乙每小时砌砖60块,所以他们每小时共砌砖75块 + 60块 = 135块。
他们合作8小时,共砌砖135块 × 8小时 = 1080块。
3. 题目:若一个数的2/5等于20,那么这个数是多少?答案:设这个数为x,则有:2/5x = 20。
通过交叉相乘得到:2x =20 × 5。
计算得到:2x = 100,所以x = 100 ÷ 2 = 50。
所以这个数是50。
4. 题目:某图书店打折促销,原价100元的书现以8折出售,打完折的价格是多少?答案:原价100元的书以8折出售,打完折的价格为100元 × 0.8 = 80元。
5. 题目:一只长方体纸箱的长度是宽度的3倍,而宽度是高度的2倍,已知纸箱的总体积为240立方厘米,求纸箱的长、宽、高分别是多少?答案:设纸箱的高度为h,则宽度为2h,长度为3 × 2h = 6h。
根据体积的计算公式,可得到方程:h × 2h × 6h = 240。
化简得到:12h^3 = 240。
两边同时除以12得到:h^3 = 20。
求解方程,可得到h ≈ 2.714。
所以纸箱的长约为6 × 2.714 ≈ 16.286厘米,宽约为2 × 2.714 ≈ 5.428厘米,高约为2.714厘米。
6. 题目:某班级有50名学生,男生和女生的比例为3:2。
求男生和女生的人数各是多少?答案:男生和女生的比例为3:2,所以男生数与女生数可表示为3x和2x,总学生数为50人,所以有3x + 2x = 50。
数学建模作业---优化模型
P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。
制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。
(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。
数学建模例题及解析
.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。
数学建模习题
数学建模习题景德镇陶瓷学院信息工程学院习题一1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。
试构造模型并求解。
2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。
将时间分为若干段,分别确定增长率r 。
(2)阻滞增长模型。
换一种方法确定固有增长率r 和最大容量m x 。
4.说明1.5节中Logistic 模型(9)可以表为)(01)(t t r m ex t x --+=,其中0t 是人口增长出现拐点的时刻,并说明0t 与r, m x 的关系.5.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+∆t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。
次日早8:00沿同一条路径下山,下午5:00回旅店。
某乙说,甲必在二天中的同一时刻经过路径中的同一地点。
为什么?7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。
问共需进行多少场比赛,共需进行多少轮比赛。
如果是n支球队比赛呢?8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
数学建模练习题
5.一个身高为153cm,下肢92cm的女士穿高跟鞋,她的鞋跟高度为_______cm看起来最美。
6.某女士身高为165cm,下肢100cm的女士穿高跟鞋,她的鞋跟高度为_______cm看起来最美。
7某人的身高为175cm,他的下肢长度应该_________cm身材比例才协调。
8.欧拉在建立七桥问题数学模型时把桥假设为________,把岛与岸假设为_____9.欧拉通过巧妙的假设,把原来的七桥问题能否不重复走遍问题转化为一个图能否_______问题。
nchester战争数学模型判断战争的结局主要根据双方的_________.11.根据混合战争模型分析美国与越南战争的结局,美国最后失败是因为________________。
12. 商人过河数学模型中用状态变量表示某岸________情况;用决策变量表示_______情况;最后找出状态变量随________变化的规律。
13.兔子出生以后两个月就能生小兔子,假设每次不多不少恰好生一对〔一雌一雄〕。
某人买了初生的小兔子一对,那么一年后共有______对兔子。
〔假设生下来的小兔子都正常活着〕14.拳击冠军的争夺赛中共有63人参加,每轮比赛中出场的两人中的胜者及轮空者进入下一轮,直至比赛完毕,问共需要进展______场比赛,共需要_____轮比赛。
15.在个人围棋冠军的争夺赛中共有67人参加,,每轮比赛中出场的两人中的胜者及轮空者进入下一轮,直至比赛完毕,问共需要进展______场比赛,共需要____ 轮比赛。
16在层次分析法中,当一致性比率小于_______时,通过一致性检验。
17决策按照方案与条件可分为确定型决策、不确定型决策与_______。
18在层次分析法中,当一致性比率大于_______时,认为没有通过一致性检验。
20线性规划问题中根本可行解与可行解域的________等价。
21.在线性规划问题中,根本可行解的非基变量取值应该是_______。
数学建模练习题汇编
数学建模习题题目11.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.5元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小,解释实际意义是什么。
解答:(1)分析:生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其他成本也包含与w和s成正比的部分,上述三种成本中都包含有与w,s均无关的成本。
故商品的价格可表示α,β,γ为大于0的常数)。
(2)显然c是w的减函数。
说明大包装比小包装的商品更便宜,曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。
函数图像如下图所示:题目22.在考虑最优定价问题时设销售期为T,由于商品的损耗,成本q随时间增长,β为价格)。
T解答:由题意得:总利润为在此约束条件下的最大值点为题目33.某商店要订购一批商品零售,订购费c(与数量无关),随机需求量r的概率密度为p(r),与时间无关)。
问如何确定订购量才能使商店的平均利润最大,这个平均利润是多少。
为使这个平均加什么限制?利润为正值,需要对订购费c解答:设订购量为u,则平均利润为u为使这个利润为正值,应有题目44.雨滴匀速下降,空气阻力与雨滴表面积和速度平方的乘积成正比,试确定雨速与雨滴质量的关系。
解答:雨滴质量m,体积V,表面积S与某特征尺寸lv降落,题目55.某银行经理计划啊用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如表1所示。
按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。
此外还有以下限制:1)政府及代办机构的证券总共至少要购进400万元;2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);(2)如果能够以2.75%的利率借到不超过100万元资金,该经理如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?解答:(1)设投资证券A,B,C,D,E,按照规定、限制和1000万元资金约束,列出模型用LINGO求解得到:证券A,C,E分别投资2.182百万元,7.364百万元,0.454百万元,最大税后收益为0.298百万元。
小学数学五大模型练习题
小学数学五大模型练习题在小学数学教学中,五大模型是教师经常使用的一种教学方法。
它包括了常见的五种问题解决模型,即归纳模型、演绎模型、类比模型、建模模型和解决问题的启发模型。
通过学习和练习这些模型,学生可以提高对数学问题的分析和解决能力。
本文将针对小学数学五大模型进行一系列练习题的介绍和解析。
一、归纳模型归纳模型强调观察事物,找出其中的规律,由此推广到更一般的情况。
下面是一道归纳模型的练习题:练习题1:阿明用2元钱买了4个苹果,那么他用8元钱可以买几个苹果?解析:观察题目中的数据,可以发现钱和苹果的数量存在一定的倍数关系。
根据归纳模型的思路,我们可以得出苹果数量是钱数的2倍的规律。
因此,阿明用8元钱可以买8个苹果。
二、演绎模型演绎模型强调从已知条件出发,进行推理和演绎,得出问题的结论。
下面是一道演绎模型的练习题:练习题2:有一个数,它是3的倍数,它加上4得到的和还是3的倍数,那么这个数是多少?解析:根据演绎模型的思路,我们从已知条件出发进行推理。
设这个数为x,根据题目条件,得到以下两个等式:1)x是3的倍数:x = 3n (n为自然数)2)x加上4得到的和是3的倍数:(x + 4) = 3m (m为自然数)将第一个等式代入第二个等式,得到 3n + 4 = 3m。
整理等式,得到3n + 1 = 3m。
由于3n是3的倍数,所以3n + 1不可能是3的倍数。
因此,不存在满足条件的数。
三、类比模型类比模型强调将问题与已经熟悉的情境进行类比,找到相似之处,利用已有的知识解决问题。
下面是一道类比模型的练习题:练习题3:班级里有30个男生和18个女生,请问男生人数是女生人数的几倍?解析:根据类比模型的思路,我们可以用一个已知的情境进行类比:小明抓了30只蚂蚁和18只蜘蛛,请问蚂蚁的数量是蜘蛛数量的几倍?从直观上来看,蚂蚁和蜘蛛数量的比例应该与男生和女生的比例相同。
因此,男生人数是女生人数的 $\frac{30}{18}$ 倍。
数学建模习题及答案
5.设圆盘半径为单位1,矩形板材长a,宽b;可以精确加工,即圆盘之间及圆盘与板材之间均可相切。
若 ,则 , 是平衡点; 的平衡点为 . 的平衡点为 ,其中 ,此时的差分方程变为
.
由 可得平衡点 .
在平衡点 处,由于 ,因此, 不稳定.
在在平衡点 处,因 ,所以
(i) 当 时,平衡点 不稳定;
(ii) 当 时,平衡点 不稳定.
第
1.判断下列数学模型是否为线性规划模型。(a,b,c为常数,x,y为变量)
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)单位重量价格 ,其简图如下:
显然c是w的减函数,说明大包装比小包装的商品便宜,;曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。
3.对于同一种鱼不妨认为其整体形状是相似的,密度也大体上相同,所以重量w与身长 的立方成正比,即 , 为比例系数。
常钓得较肥的鱼的垂钓者不一定认可上述模型,因为它对肥鱼和瘦鱼同等看待。如果只假定鱼的横截面积是相似的,则横截面积与鱼身最大周长的平方成正比,于是 , 为比例系数。
数学建模复习题
1、一房地产公司有50套公寓要出租。
当租金为每月180元时,公寓会全部租出去。
当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20元的整修维护费。
试问房租定为多少可获得最大收入?解:设月租金定为180+10x 元,那么有x 套公寓租不出去,则收入为 (180+10x )(50-x )-(50-x )*20 =9000+320x-10x^2-1000+20x =8000+340x-10x^2 =-10(x^2-34x-800)=-10(x^2-34x+289-1089) =-10(x-17)^2+10890即x=17时,收入为最高为 10890元 180+10x=350 元答:当月租定为350元时,收入最高,最高为10890元2、设某种新产品要推向市场,t 时刻产品销售增长率与销售量x (t )成正比,设市场容量为N ,试确定产品销售增长曲线。
设有某种新产品要推向市场,t 时刻的销量为x(t),由于产品良好性能,每个产品都是一个宣传品,因此,t 时刻产品销售的增长率txd d 与x(t)成正比,同时,考虑到产品销售存在一定的市场容量N ,统计表明txd d 与尚未购买该产品的潜在顾客的数量N=x(t)也成正比,于是有txd d =kx(N=x), (1043)其中k 为比例系数,分离变量积分,可以解得x(t)=kNtC N-+e1 (1044) 方程(1043)也称为逻辑斯谛模型,通解表达式(1044)也称为逻辑斯谛曲线.由t x d d =()221kNt kNtC k CN --+ee以及22t x d d =()3231)1(kNt kNt kNt C C k CN ---+-ee e , 当x(t*)<N 时,则有txd d >0,即销量x(t)单调增加.当x(t*)2N时,22t x d d 0;当x(t*)>2N 时,22t x d d <0;当x(t*)<2N时,22t x d d >0.即当销量达到最大需求量N 的一半时,产品最为畅销,当销量不足N 一半时,销售速度不断增大,当销量超过一半时,销售速度逐渐减小.国内外许多经济学家调查表明,许多产品的销售曲线与公式(1044)的曲线十分接近,根据对曲线性状的分析,许多分析家认为,在新产品推出的初期,应采用小批量生产并加强广告宣传,而在产品用户达到20%到80%期间,产品应大批量生产,在产品用户超过80%时,应适时转产,可以达到最大的经济效益.3、一个人为了积累养老金,他每月按时到银行存A 元,银行的年利率为r ,且可以任意分段按复利计算,试问此人在5年后共积累多少养老金? 解:(1)设月利率为r ,按月按复利进行计算, 第一个月存款所得的复利终值为1F =60)1(100r +; 第二个月存款所得的复利终值为2F =59)1(100r +; 第三个月存款所得的复利终值为3F =58)1(100r +; ·第五年的最后一个月存款所得的复利终值为60F =)1(100r +。
简单数学建模100例
实用标准
分析与假设
①将 243 颗珠子平均分成 3 份,每份 81 颗,任取其 2 份放置在天平两边,若平衡则稍重的一颗在另 1 份中;若不平衡则
稍重的一颗在天平下沉的 1 份中.
②在找出含有稍重珠子的一份中(含 81 颗),再将其 81 颗珠子平均分成 3 份,每份 27 颗,任取其 2 份放置在天平两边,若 平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
③在找出含有稍重珠子的一份中(含 27 颗),再将其 27 颗珠子平均分成 3 份,每份 3 颗,任取其 2 份放置在天平两边, 若平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
④在找出含有稍重珠子的一份中(含 1 颗),再将其 3 颗珠子平均分成 3 份,每份 1 颗,任取其 2 颗放置在天平两边,若 平衡则另 1 颗稍重的一颗;若不平衡则稍重的一颗为天平下沉的 1 颗.
【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走 20 千米,已知每人最多可带一个人 4 天的食物和水。如果允许将部分食物存放于途 中,其中 1 人最远可深入沙漠多少千米?(要求最后两人返回出发点)
分析与假设 要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和 水?
练习题
文档大全
实用标准
小敏把 100 只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了 那只损坏的小灯泡吗?
【7】水果店进了十筐苹果,每筐
10 个,共 100 个,每筐里的苹果重 量都一样,其中有九筐每个苹果的 重量都是 1 斤,另一筐中每个苹果 的重量都是 0.9 斤,但是外表完全 一样,用眼看或用手摸无法分辨。 现在要你用一台普通的大秤一次把 这筐重量轻的找出来。你可以办到么?
数学几何模型小学练习题
数学几何模型小学练习题一、选择题1. 下列哪个图形不是平面图形?A. 正方形B. 三角形C. 长方形D. 球体2. 下列哪个图形是正方形?A. 三角形B. 长方形C. 正方形D. 梯形3. 下列哪个图形是等边三角形?A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形4. 正方形的四条边是______。
A. 相等且平行B. 相等但不平行C. 不等但平行D. 不等且不平行5. 长方形的对边是______。
A. 相等且平行B. 相等但不平行C. 不等但平行D. 不等且不平行二、计算题1. 一个正方形的边长为5cm,求它的周长和面积。
解答:周长 = 边长 × 4 = 5cm × 4 = 20cm面积 = 边长 ×边长 = 5cm × 5cm = 25平方厘米2. 一个长方形的长为8cm,宽为4cm,求它的周长和面积。
解答:周长 = (长 + 宽) × 2 = (8cm + 4cm) × 2 = 12cm × 2 = 24cm面积 = 长 ×宽 = 8cm × 4cm = 32平方厘米3. 一个等边三角形的边长为6cm,求它的周长和面积。
解答:周长 = 边长 × 3 = 6cm × 3 = 18cm面积 = (边长 ×边长× √3) ÷ 4 = (6cm × 6cm × √3) ÷ 4 ≈ 9.8平方厘米4. 一个直角三角形的两条直角边分别为3cm和4cm,求它的斜边长。
解答:斜边长= √(直角边1的平方 + 直角边2的平方) = √(3cm × 3cm +4cm × 4cm) = √(9cm² + 16cm²) = √25cm² = 5cm三、应用题1. 下图中,ABCD为一个长方形,E为AD的中点,连接BE。
初二数学模型练习题
初二数学模型练习题1. 小明乘坐公交车去旅游,上车时票价为每张2元,下车时票价为每张1.5元。
已知小明早上上车时购买了5张车票,下午下车时还剩下2张车票。
根据这些信息,请回答以下问题:a) 上午小明乘坐公交车的总花费是多少?b) 下午小明乘坐公交车的总花费是多少?c) 公交车票的单价分别是多少?解析:a) 上午小明上车购买了5张车票,每张2元,所以上午小明乘坐公交车的总花费为5张 * 2元/张 = 10元。
b) 下午小明下车时还剩下2张车票,所以下午小明乘坐公交车的总花费为5张 - 2张 = 3张。
假设下午每张车票的价格为x元,则下午小明乘坐公交车的总花费为3张 * x元/张。
c) 根据题目描述,上车时购买的车票价格为2元/张,下车时购买的车票价格为1.5元/张。
2. 面积问题下图所示的图形由一个正方形和一个等边三角形组成,已知正方形的边长为a,等边三角形的边长为b。
请回答以下问题:a) 图形的总面积是多少?b) 设正方形的面积为S1,等边三角形的面积为S2,求S1:S2的比值。
解析:a) 图形的总面积由正方形和等边三角形的面积之和构成。
正方形的面积为a^2,等边三角形的面积为(b^2 * sqrt(3)) / 4。
所以图形的总面积为a^2 + (b^2 * sqrt(3)) / 4。
b) 正方形的面积与等边三角形的面积比值为S1:S2 = a^2 : (b^2 *sqrt(3)) / 4 = 4a^2 : b^2 * sqrt(3)。
3. 人口增长问题一国的人口数量从1990年的1000万开始按照每年增长5%的速度增加。
请问从1990年到2000年之间的10年间,该国的人口增加了多少人?解析:从1990年到2000年的10年间,该国的人口数量以每年增长5%的速度增加。
初始人口数量为1000万,根据题意,每一年的人口增长数为初始人口数量乘以增长率5%(即0.05)。
所以每一年的人口增长数为1000万 * 0.05 = 500万。
等高模型练习题小学数学
等高模型练习题小学数学等高模型是小学数学中的一个重要概念,是计量或估算不便直接测量或估算的物体尺寸时常用的方法。
通过等高模型,我们可以更加直观地理解和解决一些实际问题。
本文将为大家介绍一些关于等高模型的练习题,帮助小学生更好地掌握这一知识点。
练习题一:图形的放缩1. 小明使用等高模型绘制了一个边长为10cm的正方形,放大了2倍。
新正方形的边长是多少?面积是原来的多少倍?2. 一张长方形画纸的长为15cm,宽为10cm。
小红按比例在画纸上绘制等高模型,使得模型的长为30cm。
那么模型的宽是多少?练习题二:三视图的绘制3. 小华想使用等高模型绘制一辆汽车,分别从正面、侧面和俯视图来展示。
请你根据以下条件绘制出汽车的三视图:正面:汽车的前部、车灯、车牌和一个轮胎。
侧面:汽车的前部、车门和两个轮胎。
俯视图:汽车的车顶、车灯和一个轮胎。
练习题三:物体的估计4. 某小学建设新图书馆,需要购买一批书柜。
已知每个书柜的高度是1.8m,宽度是0.8m,深度是0.5m。
请估计一下,如果要将100个书柜都摆放在图书馆里,总的空间需求是多少?5. 一家超市决定更换货架,已经购买了1000个新货架。
已知每个货架的高度是2.2m,宽度是1.5m,深度是0.6m。
请你估计一下超市需要为这些新货架腾出多少空间?以上是关于等高模型的一些练习题,希望能帮助小学生们更加熟练地运用等高模型来解决实际问题。
在练习中,我们不仅要掌握计算等高模型相关属性的方法,还要注意思维的灵活运用。
希望大家能够通过不断的练习和思考,提高自己的数学能力。
加油吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 初等模型
2.1 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:
(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者.
(2)2.1节中的Q 值方法.
(3)d ’Hondt 方法: 将各宿舍的人数用正整数,2,1 n
,3相除,其商数如下表:
将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A ,B ,C 行有横线的数分别为2,3,5,这就是3个宿舍分配席位.你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额.将3种方法两次分配的结果列表比较.
(4)你能提出其他的方法吗.用你的方法分配上面的名额.
2.2 在超市购物时你注意到大包装商品比小包装商品便宜这种想象了吗.比如洁银牙膏50克装的每支1.50元,120克装的每支
3.00元,二者单位的重量的价格比是1.2:1,试用比例方法构造模型解释这个现象.
(1)分析商品的价格C
与商品重量W 的关系.价格
由生产成本、包装成本和其
它成本等决定,这些成本中
有的与重量W 成正比,有的与表面积成正比,还有与W 无关的因素。
(2)给出单位重量价格C 与W 的关系。
画出它的简图,说明W 越大C 越小,但是随着W 的增加C 减小的程度变小。
解释实际意义是什么。
2.3 一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用
与测量,请你设计按照测量的长度估计鱼的重量的方法。
假设鱼池中只有一种鲈鱼,并且得到了8条
鱼的如下数据(胸围指鱼身的最大周长):
先用机理分析建立模型,再用数据确定参数。
2.4用已知尺寸的矩形板材加工一定的圆盘,给出几种简便、有效的排列方法使加工出尽可能多的圆盘。
2.5雨滴匀速下降,空气阻力与雨滴表面积和速度平方的乘积成正比,试确定雨速与雨滴质量的关系。
2.6生物学家认为,对于休息状态的热血动物消耗的能量主要用于维持体温,能量与从心脏到全身的血流量成正比,而体温主要通过身体表面散失,建立一个动物体重与心率之间
2.7 举重比赛按照运动员的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重之间的关系吗。
下面是一界奥运会竞赛的成绩,可供检验你的模型。
2.8 速度为v 的风吹在迎风面积s 为的风车上,空气密度是ρ。
用量纲分析方法确定风车获得的功率P 与v ,s ,ρ的关系。
2.9 雨速的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数。
用量纲分析方法给出速度v 的表达式。
2.10 原子弹爆炸时巨大的能量从爆炸点以冲击波形式向四周传播。
据分析在时刻t 冲击波达到的半径r 与释放能量e ,大气密度ρ,大气压强p 有关(设0=t 时0=r )。
用量
纲分析方法证明,⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=32655
12
ρϕρe t p et r ,ϕ是未定函数。
2.11 用量纲分析方法研究人体浸在匀速流动的水里时损失的热量。
记水的流速v ,密度ρ,比热c ,粘性系数μ,热传导系数k ,人体尺寸d 。
证明人体与水的热交换系数h 与
上述各物理量的关系可表为⎪⎪⎭
⎫ ⎝⎛=k c d v d k h μμρϕ,,ϕ是未定函数,h 定义为单位时间内人体的单位面积在人体与水的温差为C 1时的热量交换。
2.12 在小说《格里佛游记》中,小说国中的人们决定给格里佛相当与一个小人食量1728倍的食物.他们是这样推理的,因格里佛身高是小人的12倍.他的体格是小人的172812=3倍.所以他需要的食物是一个小人的食量的1728倍.为什么他们的推理是错误的?正确的答案是什么?
你是否可以从这些数据中预测2000年的奥运会女子铅球的最佳成绩.。