数学建模-传染病模型-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传染病模型
医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。
问题提出
请建立传染病模型,并分析被传染的人数与哪些因素有关如何预报传染病高潮的到来为什么同一地区一种传染病每次流行时,被传染的人数大致不变
关键字:传染病模型、建模、流行病
摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍
乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。
不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。
模型1
在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数,
方程(1)的解为
结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。
建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别健康人和病人这两种人。
模型2 SI模型
假设条件为
1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者即健康人(Susceptible)(S)和已感染者即病人(Infective)(i)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。
2.每个病人每天有效接触的平均人数是常数 ,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。
1
方程(5)是Logistic 模型。它的解为
这时病人增加的最快,可以认为是医院的门诊量最大的一天,意味着传染病高潮的到来,是医疗卫生部门应该关注的时刻。
况。
,这显然不符合实际情将被传染,全变为病人即所有人终时到来。第二,当可以推迟传染病高潮的健设施、提高卫生水平以改善保越小卫生水平越高。所,表示该地区的卫生水平成反比,因为日接触率与,1→∞→i t t m λλλ其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。
模型3 SIS 模型
有些病毒人在感染并治愈之后,没有免疫性,即还有可能再被感染。
模型假设
在模型二假设条件的前提下我们再增加一个假设条件
3.病人每天治愈的比例为μ日治愈率。
μλσ=一个感染期内每个病人的有效接触人数
模型构成
于是有[]Ni(t)-t (t)i(t)i(t)-t)i(t N μλ∆=∆+Ns (8)
可得微分方程
i i(0) i -i)-(1==μλi dt di 0 (9) 得到[])1/-(1--di σλi i dt = (10)
模型 4 SIR 模型
大多数传染者如天花 流感 肝炎 麻疹等治愈后均有很强的免疫力,所以冰域的人即非易感者,也非感病者,因此他们将被移除传染系统,我们称之为移除者,记为R 类
SIR 模型是指易感染者被传染后变为感染住,感病者可以被治愈,并会产生免疫力,变为移除者。人员流动图为:S-I-R 。
假设:
1 总人数为常数N ,且i (t )+s (t )+r (t )=1;
2 .病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。
3 单位时间内病愈免疫的人数与但是的病人人数成正比,比例系数l 。称为恢复系数。 在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:
模型结构
在假设1中显然有:
s(t) + i(t) + r(t) = 1 (1) 对于病愈免疫的移出者的数量应为
r t
d N Ni d μ= (2) 不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s (0s >0),0i (0i >0),0r =0. SIR 基础模型用微分方程组表示如下:
di dt ds dt
dr dt si i
si i λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩
(3)
s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。
数值计算
在方程(3)中设λ=1,μ=,i (0)= ,s (0)=,用MATLAB 软件编程:
function y=ill(t,x)
a=1;b=;
y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];
ts=0:50;
x0=[,];
[t,x]=ode45('ill',ts,x0);
plot(t,x(:,1),t,x(:,2))
pause
plot(x(:,2),x(:,1))
输出的简明计算结果列入表1。i(t) , s(t)的图形以下两个图形,i~s 图形称为相轨线,初值i(0)=,s(0)=相当于图2中的P0点,随着t 的增,(s,i)沿轨线自右向左运动.由表1、图1、图2可以看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t→∞,i→0,s(t)则单调减少,t→∞,s→. 并分析i(t),s(t)的一般变化规律.