九年级月考卷命题范围
九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
九年级上册结束命题时间及范围
2014.10.15
附表:
科目
20分钟
120
上册
数学
100分钟
120
上册
英语
100分钟
120
到第8单元
物理
80分钟
100
到第15章
化学
70分钟
100
上册
思想品德
60分钟
100
71页前
历史
60分钟
100
上册
2014---2015学年第一学期期中九年级
教学质量监测命题范围
各乡镇中心校:
为了整体推进九年级教学工作,提高教学质量,经过征求部分学校和教师的意见,计划在本学期11月底到12月初期间进行九年级上册课程结束质量监测。具体命题范围见附表。九年级课程全部结束质量监测计划在2015年3月20号左右进行。望提前通知教师,合理把握进度。如有更好的建议请尽快与教研室联系。
重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题
重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题一、单选题1.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 2.要使分式12x x +-有意义,则x 的取值应满足( ) A .1x ≠-且2x ≠ B .0x ≠ C .1x ≠- D .2x ≠3.一元二次方程2312x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x 人,经过两轮传染后共有256人感染了“甲流”.则关于x 的方程为( ) A .(1)256x x x ++=B .2256x x +=C .1(1)256x x x +++=D .2(1)(1)256x x +++=5.根据下列表格的对应值,估计方程2430x x +-=的一个解的范围是( )A .0.40.5x <<B .0.50.6x <<C .0.60.7x <<D .0.70.8x << 6.下列命题中,错误的命题是( )A .一组对边平行且相等的四边形是平行四边形;B .两条对角线互相垂直且相等的四边形是正方形;C .对角线相等的平行四边形是矩形;D .对角线互相垂直的平行四边形是菱形. 7.2024年3月24日,长安汽车重庆马拉松在美丽的海棠烟雨公园鸣枪起跑.甲、乙两人参加了40千米的比赛,甲每小时比乙多跑了2千米,最终甲比乙早1小时到达.设乙的速度为每小时x 千米,则可列方程为( )A .404012x x =+-B .404012x x =--C .404012x x =++D .404012x x =-+ 8.函数2(0)y mx nx m =+≠与y mx n =+的图象可能是( )A .B .C .D .9.已知四边形ABCD 和DEFG 都是正方形,点F 在线段AB 上,连接,AE BD BD 、交FG 于点H .若AEF α∠=,则BHF ∠=( )A .2αB .45α︒+C .22.5α︒+D .90α︒+10.将有序实数对(),m n 进行操作后可得到一个新的有序实数对(),m n m n ---,将得到的新的有序实数对按上述规则继续操作下去,每得到一个新的有序实数对称为一次操作.例如:()2,1经过一次操作后得到()1,3-,()2,1经过二次操作后得到()4,2,…,下列说法: ①若(),5m 经过三次操作后得到有序实数对(),5x ,则25x =-;②在平面直角坐标系中,将()m,2所对应的点标记为点P ,将()m ,2经过二次操作、五次操作所得的有序实数对分别标记为点M ,点N ,若直线MN 垂直于x 轴,则PMN V 的面积为56;③若3x y +=,2xy =-且x y <,则()22,x y 经过三次操作后的结果为()26--. 其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)201222-⎛⎫+-+-π= ⎪⎝⎭. 12.某商品原价200元,连续两次降价后售价为128元,则平均每次降价的百分数为. 13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.已知四边形ABCD 是菱形,若(0,0),(3,1)A C ,则直线BD 与x 轴的交点的坐标为. 15.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度为m .16.若二次函数()2142y a x x =+--的图象与x 轴有两个公共点,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为. 17.如图,在矩形ABCD中,4,AB BC ==P 是BC 边上一点,连接AP ,以A 为中心,将线段AP 绕点A 逆时针旋转60︒得到AQ ,连接CQ DQ 、,且BCQ DCQ ∠=∠,则CQ 的长度为.18.一个各数位上的数字均不为0的四位自然数abcd ,若百位数字与十位数字的乘积等于千位数字与个位数字组成的两位数,即b c ad ⋅=,则称这个数为“功能数”例如:四位数1342,∵3412⨯=,∴1342是“功能数”.若349d 是一个“功能数”,则这个数为;对于一个“功能数”P ,将P 的千位数字和十位数字交换位置,百位数字和个位数字交换位置得到的新数记为P ',若4P P '+除以13的余数为P 的十位数字的2倍,则满足条件的P 的值为.三、解答题19.计算:(1)()()22x x y x y -++; (2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭. 20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD ∥. ∴①,OCF OAE ∠=∠.∵点O 是AC 的中点, ∴②.∴CFO AEO ≅△△(AAS ). ∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某水果店商家购进了一批哈密瓜和脆桃.商家用1600元购买哈密瓜,800元购买脆桃,每斤哈密瓜比每斤脆桃的进价贵6元,且购进脆桃的数量是哈密瓜的2倍.(1)求商家购买每斤哈密瓜和每斤脆桃的进价;(2)商家在销售过程中发现,当哈密瓜的售价为每斤14元,脆桃的售价为每斤5元时,平均每天可售出20斤哈密瓜,40斤脆桃.调查,哈密瓜的售价每降低0.5元平均每天可多售出5斤,且降价幅度不低于10%.商家在保证脆桃的售价和销量不变且不考虑其他因素的情况下,想使哈密瓜和胞桃平均每天的总获利为270元,则每斤哈密瓜的售价为多少元? 23.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,点D 是AC 的中点,动点P 以每秒1个单位长度的速度从点D 出发沿折线D A B →→方向运动,到达点B 时停止运动,设点P 的运动时间为x 秒,BCP V 的面积记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线11y x b 2=+与该函数图象有且仅有两个交点,则b 的取值范围是______.24.如图,四边形ABCD 是休闲公园的人行步道.AC ,BD 是两条自行车道且相交于点O ,点B 是休闲公园入口.经测量,点A 在点D 的西偏南45︒方向,点C 在点D 的东偏南30︒方向,点C 在点A 的北偏东75︒方向,AD =(1)求自行车道AC 的长度(精确到个位数);(2)测得45AOB ∠=︒,小刚从A 点出发步行沿步道AB 去B 处取快餐,小刚步行的速度为60米每分钟,送餐员等待的时间不超过5分钟,请计算说明小刚能否在送餐员规定的时间内取1.414≈ 1.732≈2.449)25.如图,抛物线25y ax ax b =++经过点()1,5D --,且交x 轴于()6,0A -,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求抛物线的解析式.(2)如图1,过点D 作DM x ⊥轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE AD ⊥,PF DM ⊥PF +的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA G ,使得45CAG ∠=︒,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程. 26.已知ABC V 为等边三角形,D 是边AB 上一点,连接CD ,点E 为CD 上一点,连接BE .(1)如图1,延长BE 交AC 于点F ,若45CBF ∠=︒,BF =CF 的长;(2)如图2,将BEC V 绕点C 顺时针旋转60︒到AGC V ,延长BC 至点H ,使得CH BD =,连接AH 交CG 于点N ,求证2CE DE GN =+;(3)如图3,4AB =,点H 是BC 上一点,且2BD CH =,连接DH ,点K 是AC 上一点,CK AD =,连接DK ,BK ,将△BKD 沿BK 翻折到BKQ V ,连接CQ ,当ADK △的周长最小时,直接写出CKQ V的面积.。
九年级数学第一次月考卷(沪科版)(考试版)【测试范围:第二十一章】
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。
2.测试范围:第二十一章(沪科版)。
第Ⅰ卷一、单项选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(4分)下列函数:①y=32;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有( )A.1个B.2个C.3个D.4个2.(4分)已知反比例函数y=―6x,下列说法中正确的是( )A.该函数的图象分布在第一、三象限B.点(2,3)在该函数图象上C.y随x的增大而增大D.该图象关于原点成中心对称3.(4分)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是( )A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位4.(4分)已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:x…﹣1012…y…﹣5131…则下列判断正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x>1时,y随x的增大而减小D.方程ax2+bx+c=0的正根在3与4之间5.(4分)若点(x1,y2)、(x2,y2)和(x3,y3)分别在反比例函数y=―2x的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y16.(4分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是( )x…﹣3﹣2 ﹣1 0 1 …y…﹣11﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2B.﹣2<x1<﹣1C.﹣1<x1<0D.0<x1<17.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a―b+cx的图象在同一坐标系中大致为( )A.B.C.D.8.(4分)若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是( )A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD9.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B两点,与y轴的交点C在(0,3),(0,4)之间(包含端点),抛物线对称轴为直线x=1,有以下结论:①abc>0;②3a+c=0;③―43≤a≤―1;④a+b≤am2+bm(m为实数);⑤方程ax2+bx+c﹣3=0必有两个不相等的实根.其中结论正确有( )A.1个B.2个C.3个D.4个10.(4分)在平面直角坐标系中,我们把横坐标和纵坐标互为相反数的点称为“相反点”,例如点(1,﹣1),(―…,都是“相反点”,若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”(2,﹣2),当﹣1≤x≤m时,二次函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,则m的取值范围为( )A.﹣1≤m≤4B.―1≤m≤32C.32≤m≤4D.32≤m≤5第II卷二、填空题(本题共4小题,每小题5分,共20分.)11.(5分)若函数y=(m+2)x3―m2是反比例函数,则m的值为 .12.(5分)若抛物线y=x2+2x+c的顶点在x轴上,则c= .13.(5分)如图,在△OAB中,边OA在y轴上.反比例函数y=kx(x>0)的图象恰好经过点B,与边AB交于点C.若BC=3AC,S△OAB=10.则k的值为 .14.(5分)抛物线y=ax2﹣4x+5的对称轴为直线x=2.(1)a= ;(2)若抛物线y=ax2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,则m的取值范围是 .三、解答题(本题共9小题,共90分.第15-18题每题8分,第19-20题每题10分,第21-22题每题12分,第23题每题14分,解答应写出文字说明、证明过程或演算步骤.)15.(8分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.16.(8分)已知二次函数y=x2﹣(m+2)x+2m﹣1.(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数图象与y轴交于点(0,3),求该函数的图象与x轴的交点坐标.17.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根: ;(2)写出不等式ax2+bx+c<0的解集: ;(3)写出y随x的增大而减小的自变量x的取值范围 ;(4)若方程ax2+bx+c=k有两个不相等的实数根,直接写出k的取值范围: .18.(8分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2),B(﹣2,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA,OB,求△ABO的面积;(3)不等式k1x+b>k2x的解集是 .19.(10分)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB 为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.20.(10分)为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物9min燃毕,此时室内空气每立方米的含药量为5mg.请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?21.(12分)在函数的学习中,我们经历了列表、描点、连线画出函数图象,并结合函数图象研究函数性质及其应用的过程,以下是我们研究函数y=(x+1)2―1,x≤11,x>1的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012…y…a2―14﹣1―142b…(1)写出表中a,b的值:a= ,b= ;(2)请根据表中的数据在平面直角坐标系中画出该函数的图象,并根据函数图象写出该函数的一条性质: ;(3)若此函数与直线y=m﹣2有2个交点,请结合函数图象,直接写出m的取值范围 .22.(12分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?23.(14分)如图,已知:抛物线y=―14x2+bx+c经过点A(0,2)点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求△ACM面积的最大值及此时点M的坐标;(3)M点坐标为(2)中的坐标,若抛物线的图象上存在点P,使△ACP的面积等于△ACM面积的一半,则P点的坐标为 .。
九年级生物月考试卷41
九年级生物月考试卷41考试试卷考试范围:全部知识点;考试时间:100分钟;命题人:明白的不了一学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共8题,共16分)1、我们知道,经常锻炼有利于增强体质,有利于提高抗传染病的能力,从预防传染病的角度看体育锻炼应属于()A. 控制传染源B. 切断传播途径C. 保护易感人群D. 消灭病原体2、生物体能够由小长大的主要原因是()A. 细胞数目的增多B. 细胞的分裂和体积增大C. 细胞的体积不断增大D. 营养状况的好坏3、绿色食品是指()A. 在保质期内的食品B. 食用前清洗干净的食品C. 所有绿颜色的食品D. 从生产、加工、包装到储存、运输、销售等环节都需要避免有害物质侵染的食品4、常参加体育锻炼的人,其心脏输送血液的功能会增强,原因是()A. 心脏增大,所含血液增多B. 心肌数目增多,收缩有力C. 心肌发达,收缩有力D. 心率加快,输送氧的能力强5、下列不属于大熊猫主要特征的是()A. 哺乳B. 体温恒定C. 体表被毛D. 卵生6、绿色开花植物双受精过程依次是()a精子与卵细胞、极核融合;b花粉管进入子房;c花粉管进入胚珠;d花粉萌发出花粉管;e花粉管末端破裂释放出精子.A. dbceaB. dcbeaC. abcdeD. debca7、在媒体连续曝光食品安全事件后,大家都在问“我们还能吃什么?”.以下有关食品卫生与平衡膳食的叙述中,正确的是()A. 检测出含“瘦肉精”的肉类食品,加工成火腿肠后即可食用B. 受污染的新鲜蔬菜经过腌制才可食用,还能降低癌症的患病率C. 蔬菜和水果难免喷洒过农药,我们应该用清水浸泡冲洗或削皮后食用D. 保证居民有均衡营养的前提是食品必须安全,因而食品的种类应尽可能少8、甲乙两地出产同一种哈密瓜,甲地的哈密瓜比乙地的含糖量高.为探明原因,有人对两地气候条件进行调查,结果见下表.据表分析,正确的是()A. 甲地光照强度较大,光合作用合成的糖类较多B. 甲地昼夜温差大,夜间呼吸作用较弱,消耗的糖类较少C. 乙地土壤不够肥沃,不适合哈密瓜生长D. 乙地平均温度较高,哈密瓜发生了变异评卷人得分二、填空题(共5题,共10分)9、抗生素是由某些产生的、能杀死或抑制某些致病细菌的物质.但过多服用抗生素会杀死肠道内的,从而影响身体健康.10、据细胞结构图回答问题:(1)图中属于植物细胞结构的是图.(2)植物的叶片是绿色的,主要是叶片的细胞中含有较多的[].(3)图中[7]细胞壁的功能是.(4)能将光能转化成贮存在有机物的能量,是植物进行光合作用的场所是[].(5)能将有机物分解,释放能量的结构是[].(6)图甲细胞进行分裂时,先分裂,最后细胞中央形成新的.(7)“种瓜得瓜,种豆得豆”与这种现象有关的结构是[].(8)喷洒在蔬菜上的农药一般很难渗入蔬菜的细胞内,其主要控制作用是[].(9)在显微镜下观察,看到缓缓流动的结构是[].细胞的许多生命活动都在此完成;西瓜吃起来有甜味,因为中含有大量甜味物质,它储存其[]中.(10)植物细胞与动物细胞的区别是:植物细胞一般有;而动物细胞没有.11、常见的单细胞生物有:..等.12、盐度,即水体中的含盐量,是一种非生物因素.用含盐量较高的水浸泡种子,会影响种子的萌发吗?请设计一个实验来寻找答案.(1)提出问题:用含盐量较高的水浸泡种子会影响种子的萌发吗?(2)作出假设:用含盐量较高的水浸泡种子会影响种子的萌发.(3)器具材料:正常的大豆种子100粒、清水、10%食盐水(4)实验步骤:①将大豆种子平均分为A、B两组,其中A组浸泡在10%的食盐水中,B组浸泡在中.均相同条件下浸泡6小时左右.②将浸泡后的A、B两组种子分别用湿纸巾包起来并放入塑料袋中,注明A与B.再将A、B塑料袋放置在温暖的地方并注意保湿.在A、B两组实验中除了实验变量外,其余的条件均相同,这样的两组实验叫做对照实验.其中实验组是组,对照组是组.③两天后,打开塑料袋观察并统计两袋中已经萌发的种子数.(5)预测结果、得出结论:①如果种子萌发数A>B,说明10%的食盐水可以大豆种子的萌发;②如果种子萌发数A<B,说明10%的食盐水可以大豆种子的萌发;③如果种子萌发数A与B相差无几,说明10%的食盐水对大豆种子的萌发.13、如图表示从受精卵到新生儿产出的大致过程,请你根据题意回答下列问题:(1)1是,由产生;2是,3是.(2)受精卵的形成和胚胎的发育在不同的场所进行的(图中用A、B表示)请写出场所A,B.评卷人得分三、判断题(共8题,共16分)14、枯叶蝶的事例说明了生物对环境的影响..(判断对错)15、蜜蜂幼虫的形态结构和生活习性与成虫很相似..(判断对错)16、现在所有的生物物种都是从原来已经存在的另一个物种演变而来的.(判断对错)17、使用显微镜观察时,用左眼观察,右眼闭起才能看得清楚..(判断对错)18、儿童和少年的骨中,有机物少于1/3,容易变形,所以要注意坐、立、行的姿势..(判断对错)19、番茄的果皮对内部起保护作用,属于保护组织..(判断对错)20、在输血时,针刺入的血管是动脉..21、小肠是食物最主要的消化场所,大肠是营养物质最主要的吸收场所.(判断对错)评卷人得分四、简答题(共4题,共40分)22、在我市淡水鱼养殖中,青鱼、草鱼、鲢鱼和鳙鱼被称为“四大象鱼”.结合所学知识回'答:(1)养殖时,“四大家鱼”应“单独养殖”,还是“混合养殖”?______.简要说明理由.______.(2)在养殖池塘中,清晨和下雨前常发现鱼有浮头现象.为了探究鱼浮头现象的可能原因,某兴趣小组进行实验研究,获得如图所示结果.据此可推断,引起鱼浮头可能的原因是什么?______.在生产中应采取怎样的措施?______.23、如图表示人体部分系统之间的联系。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
初中数学初三月考考试卷测试考试卷考点.doc
初中数学初三月考考试卷测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题1.如果一个命题正确,那么它的逆命题也正确22.( 本小题满分10分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:⑴△AEH≌△CGF;⑵四边形EFGH是菱形.22.如图,抛物线与轴交于点,顶点为,动点在抛物线对称轴上,点在对称轴右侧抛物线上,点在轴正半轴上,且,连接得四边形.(1)求点坐标;(2)当时,显然满足条件的四边形有两个,求出相应的点的坐标;(3)当时,对于每一个确定的值,满足条件的四边形有两个,当这两个四边形的面积之比为1:2时,求.20.在形状、大小、质量完全相同且不透明的四张卡片中,分别写有数2、3、5、6,随机抽取一张卡片记下数字后放回,洗匀后,再抽取一张卡片记下数字.评卷人得分(1)请用列表或树状图的方法表示可能出现的所有结果;(2)设第一次取出的数字记为,第二次取出的数字记为,求两次抽到数字组成的点(x,y)在直线上的概率。
23.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.22.(2015秋•鞍山期末)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连结OD,AC.(1)求证:∠B=∠DCA;(2)若tanB=,OD=,求⊙O的半径长.22.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为______________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?17.2cos 30°+tan 45- 4sin260°8.已知四个点的坐标分别是(-1,1),(2,2),,,从中随机选取一个点,在反比例函数y=图象上的概率是________.11.分解因式:=__________.12.如图,将△ABC绕其中一个顶点逆时针连续旋转、、后所得到的三角形和△ABC的对称关系是____________.13.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=______________°.13.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.2.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______________.18.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.(1)求证:△ACD≌△EDC;(2)若点D是BC中点,说明四边形ADCE是矩形.27.在学习《2.1圆》时,小明遇到了这样一个问题:如图(1)、(2)所示,△ABC和△DBC中,∠A=∠D=90°.试证明A、B、C、D四点在同一圆上.小明想到了如下证法:在图(1)、(2)中取BC中点M,连结AM、DM.则有AM=BM=CM及DM=BM=CM,即AM=BM=CM=DM,所以A、B、C、D四点在以M为圆心,MB为半径的圆上.根据以上探究问题得出的结论,解决下列问题:(1)如图(3),在△ABC中,三条高AD、BE、CF相交于点H,连结DE、DF,若∠BAC=64°,则∠EDF=__________°.(2)如图(4),已知AB是⊙O的直径,CD是⊙O的弦,G为CD的中点,CE⊥AB于E,DF⊥AB于F(E、F不重合).若∠EGF=60°,求证:CD=AB.13.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且(0,3)、(﹣4,0).(1)求经过点的反比例函数的解析式;(2)设是(1)中所求函数图象上一点,以顶点的三角形的面积与△COD的面积相等.求点P的坐标.23.某校计划成立学生社团,要求每一位学生都选择一个社团,为了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”“科学社团”“书画社团”“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a=,b=;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.7.下列方程中没有实数根的是( )A.x2-x-1=0B.x2+3x+2=0C.3x2+2x-2=0D.x2+x+2=05.在同一平面上,点A到⊙O的圆心距离为2,⊙O的半径为1,点A与⊙O的位置关系是( ) A.点在圆外B.点在圆上C.点在圆内D.无法确定3.若关于x的一元二次方程k+2x﹣1=0有实数根,则k的取值范围是().A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠04.下列运算正确的是()A.3x2﹣2x2=x2B.(﹣2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a﹣14.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( ).A.5mB.mC.4mD.2m2.图中的三角形是有规律地从里到外逐层排列的。
九年级生物月考试卷994
九年级生物月考试卷994考试试卷考试范围:全部知识点;考试时间:100分钟;命题人:的小可我的学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、植物进行呼吸作用对其生命活动的进行有重要意义.下图便是对呼吸作用及其意义的阐述,则①②③分别代表的是()A. 光照、叶绿体、二氧化碳B. 氧气、叶绿体、二氧化碳C. 氧气、线粒体、二氧化碳D. 二氧化碳、线粒体、氧气2、如图表示淀粉、脂肪和蛋白质在消化道中各部分被消化的程度.请据图判断:甲、乙、丙分别代表()A. 淀粉、脂肪、蛋白质B. 淀粉、蛋白质、脂肪C. 脂肪、蛋白质、淀粉D. 蛋白质、淀粉、脂肪3、以下哪种生物的结构层次中有系统()A. 含着草B. 狮子C. 蘑菇D. 流感病毒4、家鸽独特的呼吸方式是()A. 双重呼吸B. 用所管进行呼吸C. 吸进氧气,呼出二氧化碳D. 吸进二氧化碳,呼出氧气5、下列植物属于乔木的是()A. 柳树、悬铃木、杨树B. 雪松、银杏、菊花C. 美人蕉、紫荆花、月季花D. 龙爪槐、鸡冠花、仙人球6、将细菌放培养基上培养,它会繁殖并形成细菌菌群(如图),某生物兴趣小组向检测两种抗生素的杀菌作用,下列哪种实验方案最合适()A.B.C.D.评卷人得分二、填空题(共8题,共16分)7、根据关节示意图回答问题(1)把两块骨牢固地联系在一起的结构是[].(2)关节腔内含有滑液,可以减少骨与骨之间的.(3)我们通常说的脱臼是指[]从[]中脱落出来的现象.8、一朵花的主要部分是和.9、人体必须的营养物质是:蛋白质、、脂肪、维生素、无机盐、水.10、据图回答:图A和图B中①和②分别表示两种肌肉,③表示一块骨.(1)①是.②是.(2)肌肉包括A、B两部分,其中A是指,B是指.(3)图B中,①处于状态,②处于状态.(4)当你双手自然下垂时,感觉到比较轻松,这时①和②所处的状态是,当你手提重物时,容易觉得累,这时①和②所处的状态是.A.都收缩B.都舒张C.前者收缩,后者舒张D.前者舒张,后者收缩(5)①和②能相互配合,共同完成动作是在的支配下.(6)判断:①和②的两端都附着在③上.11、(2013•梧州一模)根据如图的豌豆杂交实验回答问题:(1)豌豆的紫花和白花在遗传学上称为,其中,是隐性性状.(2)若用B表示显性基因,b表示隐性基因,则亲代紫花的基因组成是,后代白花的基因组成是.(3)种植子代紫花豌豆的种子,其后代会不会出现白花豌豆?.12、人体内形成尿液的场所是;人体内消化食物和吸收营养物质的主要场所是;血液循环的动力器官是;呼吸系统的主要器官是.13、像桃花这样,一朵花中既有雄蕊又有雌蕊的花叫做;而像黄瓜的花一样,只有一种花蕊的花叫做.14、观察桃花的结构示意图,请据图分析回答下列问题:(1)该图除了表示桃花的结构外,还可表示桃花的过程.花谢以后要结桃子,还要经历的另一个重要生理过程是.(2)图中序号3、4、5所示结构共同组成.(3)桃树体细胞的染色体数目16条,那么图中[1]结构内的花粉的染色体数目是条.评卷人得分三、判断题(共8题,共16分)15、缺维生素C可引起坏血症.(判断对错)16、食物腐败的根本原因是微生物繁殖..(判断对错)17、当原尿流经肾小管时,原尿中的全部葡萄糖、大部分水和部分无机盐被肾小管重新吸收形成尿..18、人类的始祖在非洲.这是一个学术观点而不一定是事实..(判断对错)19、流感多发季节,老师在教室洒醋、熏艾条是为了控制传染源。
九年级物理11月月考
2013级理科综合物理试卷(共2张)第1张2012~2013学年上期九年级物理11月月考试题 (本试卷为理科综合卷物理部分 命题范围:九年级物理第十一至十三章,本试卷共2张,满分:80分,考试时间:90 命题人:顾明东 审题人:顾明东) 一、选择题(每小题仅有一个最佳答案,请将其选出填在括号中,每题2分,共22分) 1、以下估测与实际情况相符的是( ) A 、人体感觉舒适的环境温度约为40℃ B 、人正常步行的速度约为5m /s C 、中学生脉搏跳动一次的时间约为3s D 、一只普通鸡蛋的质量约为50g 2、一本物理书放在水平课桌上处于静止状态,下列图中,属于平衡力的是:( ) A 、书受到的重力和桌面对书的支持力 B 、 书受到的重力和书对桌面的压力 C 、课桌受到的重力和桌面对书的支持力 D 、书对桌面的压力和桌面对书的支持力 3、下列由做饭所联想到的物理知识,其中错误的是( ) A 、静止在水平桌面上杯子受到重力和它对桌面的压力是一对平衡力 B 、把鸡蛋往碗沿上一磕,鸡蛋就破了,是利用了力的作用是相互的道理 C 、包子皮上捏出了漂亮的花边,是力改变了物体的形状 D 、泼水时,盆留在手中,水由于惯性飞出去 4、如图所示,是某小组成员利用能连续闪光的数码照相机拍摄到的四张小球运动的照片,其中受到平衡力作用的小球是( ) 5、关于误差的说法中正确的是( ) A 、测量时出现了误差,则说明一定是实验操作出了差错. B 、选用精密的测量仪器,改进实验方法,认真细致地测量,可以避免测量误差. C 、通过校准测量工具,改进测量方法,选用精度高的测量工具等方法可减小测量误差。
D 、多次测量取平均值也不能减小测量误差,因为测量次数越多,测量值的误差越大 6、下列措施中,为了减小..摩擦力的是( ) A. 浴室脚垫做得凸凹不平 B.下坡时,捏紧刹车闸 C. 汽车轮子上加防滑链 D. 旱冰鞋装有滚轮 7、下面增减摩擦的事例中,属于增大摩擦的例子是( ) A 、锁生锈不好开时,将少量石墨粉注入锁孔 B 、气垫船的船底跟水面之间有一层空气垫 C 、在地面推动笨重货箱时,在货箱下垫上几根圆木 D 、在结冰的路面上撒些沙子或木渣 8、如图所示,用工具橇钉子时,向哪一个方向施力 最省力( ) A 、沿F 1的方向 B 、沿F 2的方向 C 、沿F 3的方向 D 、沿F 的方向 9、惯性现象既有利,也有弊,以下属于利用惯性“有利”的一面是( ) A 、赛车在转弯时滑出赛道 B 、高速路上汽车限速行使 C 、跳远运动员跳远时助跑 D 、人踩到西瓜皮上会滑倒 10、用下列简单机械,使重量相同为G 物体都处于静止状态,其中用力最大的是(不计摩擦和机械自重)( ) 11、下列说法正确的是( ) A 、一块砖切成体积相等的两块后,砖的密度变为原来的一半 B 、铁的密度比铝的密度大,表示铁的质量大于铝的质量 C 、铜的密度是8、9×103 kg/m3,表示1m3的铜的质量是8、9×103 kg D 、密度不同的两个物体,其质量一定不同 二、填空题(每空1分,共17分) 12、200cm 3的水,结成冰后质量为 g ,冰的体积为 cm 3。
24-25九年级数学第一次月考卷(考试版A4)(浙教版九上第1~2章:二次函数+简单事件的概率)
2024-2025学年九年级数学上学期第一次月考卷(浙教版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:浙教版九年级上册第1~2章(二次函数+简单事件的概率)。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将抛物线21y x =+向左平移3个单位长度得到抛物线( )A .()231y x =++B .()231y x =-+C .24y x =+D .22y x =-2.一只不透明的袋子中装有2个黑球和2个白球,这些球除颜色外无其他差别,从中任意摸出3个球,下列事件是随机事件的是( )A .摸出的3个球颜色相同B .摸出的3个球中有1个白球C .摸出的3个球颜色不同D .摸出的3个球中至少有1个白球3.在一个不透明的盒子里装有20个黑、白两种颜色的小球,每个球除了颜色外都相同,小红通过多次摸球试验发现,摸到黑球的频率稳定在0.2左右,则盒子里的白球的个数可能是( )A .4B .8C .10D .164.下列关于抛物线2(1)4y x =-++的判断中,错误的是( )A .形状与抛物线2y x =-相同B .对称轴是直线1x =-C .当2x >-时,y 随x 的增大而减小D .当31x -<<时,0y >5.宁夏素有“塞上江南”之美誉,这里既有古老的黄河文明,又有雄浑的大漠风光.某校开展“大美宁夏,闽宁同行”旅游主题活动.选取三个景点:A .沙坡头,B .六盘山,C .水洞沟.每位参加交流的学生都可以从中随机选择一个景点,则小明和小颖选择同一个景点的概率为( )A .19B .29C .13D .236.已知二次函数()21y a x =-,当1x <-时,y 随x 增大而减小,则实数a 的取值范围是( )A .0a >B .1a <C .1a ¹D .1a >7.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB 的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC 是( )A .6米B .5米C .4米D .1米8.在同一平面直角坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的图像可能是( )A .B .C .D .9.如图是二次函数()20y ax bx c a =++¹图象的一部分,且经过点(2,0),对称轴是直线12x =,给出下列说法:①0abc <;②1x =-是关于x 的方程20ax bx c ++=的一个根;③若点1215,,(,33M y N y æö-ç÷èø)是函数图象上的两点,则12y y >.其中正确的个数为( )A .0B .1C .2D .310.已知抛物线22y x x m =-++交x 轴于点(,0)A a 和(,0)B b ,下列四个命题:①0m >;②对于抛物线上的一点(,)P x y ,当0x >时,y m >;③若1a =-,则3b =;④抛物线上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >;其中真命题的序号是( )A .①②B .①③④C .③④D .②③④第二部分(非选择题 共90分)二、填空题:本题共6小题,每小题3分,共18分。
九年级第一次月考考试范围
九年级第一次月考考试范围可能会因学校和地区而异,以下是一般情况下九年级第一次月考的考试范围:
1. 语文:包括古文、现代文、作文等。
古文部分会涉及一些经典篇目,如《论语》、《左传》等;现代文部分会选取一些经典的散文、小说等;作文一般是命题作文或半命题作文。
2. 数学:包括代数、几何、概率等。
代数部分会涉及因式分解、方程求解等;几何部分会涉及三角形、四边形等;概率部分会涉及基础的概率知识。
3. 英语:包括听力、单选、阅读理解、完形填空、作文等。
听力会播放一段短文或对话,要求考生根据听到的内容选择答案;单选会涉及语法、词汇等;阅读理解会选取一篇短文,要求考生理解文章内容并回答问题;完形填空会给出一段缺少单词的短文,要求考生根据上下文填入正确的单词;作文一般是命题作文或半命题作文。
4. 物理:包括力学、电学、光学等。
力学部分会涉及牛顿运动定律、重力等;电学部分会涉及电阻、电源等;光学部分会涉及折射、反射等。
5. 化学:包括物质的性质、化学反应等。
物质的性质会涉及元素周期表、化合价等;化学反应会涉及化学方程式、化学反应的条件等。
6. 历史:一般会选取中国古代史、中国近现代史和世界历史的一些重要事件和时期进行考察,例如中国古代的政治制度、明清时期的对外关系、二战时期的国际关系等。
7. 政治:可能包括中国特色社会主义理论体系、国家治理体系和治理能力现代化等内容。
以上是一般情况下九年级第一次月考的考试范围,具体范围可能会因学校和地区而异。
山西省太原市2023-2024学年九年级上学期月考数学试题(含解析)
2023-2024学年第一学期九年级教学质量检测考试(10月月考)数学(北师)注意事项:1.本试卷考查范围:第1、2章完。
本试卷共8页,满分120分,考试时间为120分钟。
2.本试卷采用网阅形式阅卷,请将答题信息与答题过程在配套的答题卡上完成。
试卷上答题无效。
3.答卷前,考生务必将自己的姓名、准考证号等相关信息填写在本试卷配套答题卡的相应的位置里.4.考试结束后,将本试卷和答题卡一并交回.第I 卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题的四个选项中,只有一项最符合题意,请选出并在答题卡上将该项涂黑。
)1.下列方程中,属于一元二次方程的是( )A .B .C .D .2.一元二次方程配方后可变形为( )A .B .C .D .3.方程的解是( )A .B .C .D .4.用求根公式解一元二次方程时a ,b ,c 的值是( )A .B .C .D .5.如图,在中,,D 是AB 的中点,,则CD 的长为()A .4B .5C .6D .86.如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形ABCD .测得A 、B 的距离为6,A 、C 的距离为4,则B 、D 的距离是()21x y -=223x x+=2240x y -+=2210x x -+=2810x x --=2(4)17x +=2(4)15x +=2(4)17x -=2(4)15x -=25x x =5x =0x =125;0x x =-=125;0x x ==2324x x -=3,2,4a b c ==-=3,4,2a b c ==-=3,4,2a b c ==-=-3,4,2a b c ===-Rt ABC △90ACB ∠=︒8AB =A .B .8C .D .7.电影《满江红》于2023年1月22日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x ,则方程可以列为()A .B .C .D .8.若关于x 的一元二次方程有实数根,则k 的取值范围是( )A .B .C .且D .且9.如图,中,,点D 是AB 边上的动点,过点D 作边AC ,BC 的垂线,垂足分别为E 、F 连接EF ,则EF 的最小值为()A .3B .2.4C .4D .2.510.如图、正方形ABCD 的边长为4,G 是对角线BD 上一动点,于点E ,于点F ,连接EF ,给出四种情况:①若G 为BD 的中点,则四边形CEGF 是正方形;②若G 为BD 上任意一点,则;2(1)7x +=22(1)7x +=222(1)7x ++=222(1)2(1)7x x ++++=2690kx x -+=1k <1k ≤1k <0k≠1k ≤0k ≠Rt ABC △9034ACB AC BC ∠=︒==,,GE CD ⊥GF BC ⊥AG EF =③点G 在运动过程中,的值为定值4;④点G 在运动过程中,线段EF 的最小值为正确的有( )A ①②③④B .①②③C .①②④D .①③④第Ⅱ卷 非选择题(共90分)二、填空题(本题共5个小题,每小题3分,共15分。
九年级月考试卷标题
九年级月考试卷标题专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个是光合作用的主要产物?A. 氧气B. 二氧化碳C. 水D. 糖2. 哪个过程是细胞呼吸的一部分?A. 光合作用B. 脱水反应C. 酶促反应D. DNA复制3. 下列哪个是原子的基本粒子?A. 质子B. 电子C. 中子D. 所有上述4. 下列哪个是牛顿第三定律的内容?A. 力等于质量乘以加速度B. 作用力和反作用力大小相等,方向相反C. 物体静止或匀速直线运动,除非受到外力作用D. 万有引力定律5. 下列哪个是生物多样性的一个层次?A. 物种多样性B. 生态系统多样性C. 基因多样性D. 所有上述二、判断题(每题1分,共5分)1. 地球是太阳系中离太阳最近的行星。
()2. 光速在真空中是最快的速度。
()3. 酸雨的主要成分是二氧化碳。
()4. 植物的根呼吸的是空气中的氧气。
()5. 蒸发是液态变为气态的一种方式。
()三、填空题(每题1分,共5分)1. 地球的大气层主要由氮气和________组成。
2. 在化学反应中,________是一种物质转变成另一种物质的过程。
3. 光合作用中,植物通过叶绿体将水和二氧化碳转化为________和氧气。
4. 动物细胞和植物细胞都包含有________、细胞质和细胞膜。
5. 牛顿的三大运动定律是物理学中的基础,其中第一定律又被称为________。
四、简答题(每题2分,共10分)1. 简述光合作用的基本过程。
2. 解释牛顿第一定律。
3. 描述细胞呼吸的主要阶段。
4. 什么是生物多样性?它为什么重要?5. 简述地球内部结构的基本层次。
五、应用题(每题2分,共10分)1. 如果一个物体的质量是5千克,受到10牛的力作用,计算它的加速度。
2. 植物通过光合作用将6个二氧化碳分子和6个水分子转化为一个葡萄糖分子和6个氧气分子。
写出这个反应的化学方程式。
3. 描述如何通过实验来观察植物的光合作用。
新北师大版九年级上学期阶段性考试数学试题(命题范围上册、下册)。com
新北师大版2014-2015年九年级上学期阶段性考试数学试题命题范围:九年级上、下册(侧重下册) 2015、1、23一、选择题(每小题3分,共18分)1.点M (sin 60-,cos 60)关于x 轴对称的点的坐标是A.12⎫⎪⎪⎝⎭B.12⎛⎫ ⎪ ⎪⎝⎭C.⎪⎪⎭⎫ ⎝⎛21-,23-D.1,2⎛- ⎝⎭2.二次函数22(1)3y x =--的图象的顶点的坐标是A.(1,3)B.(1-,3)C.(1,3-)D.(1-,3-) 3.有下列函数:①3y x =;②1y x =--;③1y x=-(0x <);④221y x x =++.其中当x 在各自的自变量的取值范围内取值时,y 随着x 的增大而增大的函数有 A.①② B.②④ C.①③ D.③④4.抛物线y =x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为A.y =x 2+4x +3B.y =x 2+4x +5C.y =x 2-4x +3D.y =x 2-4x -55.Rt △ABC ,∠C =900,AB =6,cosB =23 ,则BC 的长为A.4B.2 5C.18 1313D.1213136.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =α,则AD 等于 A.asin 2α B.acos 2α C.asin αcos α D.asin αtan α二、选择题(每小题3分,共30分)7.如图是4×4的正方形网格,点C 在∠BAD 的一边AD 上,且A 、B 、C 为格点, sin ∠BAD 的值是 _________ .8.在一个不透明的袋子里,有2个白球和3个红球,它们只有颜色上的区别,从袋子里随机摸出一个球,则摸到白球的概率为 . 9.sin 245°+tan60°cos30°-tan45°= .10.锐角A 满足2sin (A -15°)=3A = .11.轮船从B 处以每小时10海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处再观测灯塔A 在北偏东60°方向上,则C 处与灯塔A 的距离是 海里.12.将二次函数化为的形式,则.13.小明沿着坡度为1∶2的山坡向上走了1000m ,则他升高了 m.14.已知抛物线y =c x +-2x 21-的顶点为则 .15.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x -1)2+1的图象上,若x 1-x 2=4,则当x 1= 时,y 1=y 2.16.已知⊙O 的半径OA =3,B 为⊙O 上一点,延长OB ,在OB延长线上截取一点C ,使得B C =2,CD 垂直于BC 交AB 延 长线于点D ,连接AC ,若AC =CD ,则AB = .三、解答题(共72分)17.计算(满分5分):+1611|12sin 45--+︒18.(满分5分)先化简,再求值:221(1)11a a a ⎛⎫-⨯- ⎪-+⎝⎭,其中3a =19.(满分6分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?20.(满分6分)丁丁想在一个矩形材料中剪出如图阴影所示的 梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮 丁丁计算出BE 、CD 的长度(精确到个位,≈1.7).21.(满分6分)某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据右图填写下表;(2)结合两班复赛成绩的平均数和中位数、极差、方差,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.22.(满分6分)如图,F 在BD 上,BC 、AD 相交于点E ,ABCDEF且AB ∥CD ∥EF.(1)图中有 对位似三角形; (2)若AB =2,CD =3,求EF 的长.23.(满分8分)如图,点A 在y 轴上,点B 在x 轴上,以AB为边作正方形ABCD ,P 为正方形ABCD 的对称中心,正方形ABCD 的边长为10,tan ∠ABO =3. (1)分别写出A ,C ,P 三点的坐标.(2)经过坐标原点O 且顶点为P 的抛物线是否经过C 点,请说明理由.(1(225.(满分10分)如图,已知抛物线y1=ax2+c和直线y 2=2x+2都经过x轴、y轴上点A和B(1)求抛物线的解析式;(2)x取何值y1>y2;(3)当x任取一值时,x对应的函数值分别为y1、y2.若y 1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.若M=1,求对应的x的值.26.(满分12分)如图已知等边△ABC中,AB=8,D为AB上一点,BD=2,E为BC 上一点(E不与点B和C重合)(1)作∠DEF=60°,交AC于点F,如图1①若BE=2,求CF的长;(满分4分)②设BE=x,CF=y,试求y关于x的函数关系式并求y的取值范围;(满分6分)(2)如图2,若BE=6,过A、D、E三点作圆交AC于点G,试求CG的长.(满分4分)。
新人教版湖南九年级数学10月月考试卷及答案
周南教育集团2021年下学期初三年级第一次限时训练
数 学
命题人:初三年级备课组 审题人:初三年级备课组
本试卷共4页,26小题,满分120分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或者签字笔将字迹的姓名和考生号、考室
号、座位号填写在答题卡上。
用2B 铅笔将试卷类 型填写在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点
涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指
定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案; 不准使用铅笔或涂改液。
不按以上要求作答的试卷无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡上交。
一、精心选一选,慧眼识金(每小题3分,共30分)
1.下列函数中,y 是x 的反比例函数的是( )
A .y=-x 21 B.y=-21x C.y=11 x D.y=1-x 1 2.下列说法中,错误的是( )
A .等边三角形都相似
B .等腰直角三角形都相似
C .矩形都相似
D .正方形都相似
3. 反比例函数的图像经过点(1,-2),则此函数的解析式是( )
A .y=2。
九年级数学上学期第一次月考试卷市命题,含解析新人教版
2016-2017学年吉林省长春市名校调研九年级(上)第一次月考数学试卷(市命题)一、选择题(共8小题,每小题3分,满分24分)1.下列各式中,是二次根式的是()A.πB.C.D.2.下列二次根式中的取值范围是x≥3的是()A.B.C.D.3.若x2m﹣1+10x+m=0是关于x的一元二次方程,则m的值应为()A.m=2 B.m= C.m= D.无法确定4.方程2x(x+6)=5(x+6)的解为()A.x=﹣6 B.x= C.x1=﹣6,x2= D.x1=6,x2=﹣5.下列根式中,不是最简二次根式的是()A. B.C.D.6.将方程x2﹣6x﹣5=0化为(x+m)2=n的形式,则m,n的值分别是()A.3和5 B.﹣3和5 C.﹣3和14 D.3和147.小芳妈妈要给一幅长为60cm,宽为40cm的矩形十字绣的四周装裱一条宽度相同的金色边框制成一幅矩形挂图,使整幅挂图面积是3400cm2.设金色边框的宽度为x cm,则x满足的方程是()A.x2+50x﹣1400=0 B.x2﹣65x﹣250=0C.x2﹣30x﹣1400=0 D.x2+50x﹣250=08.如图,在数学课上,老师用5个完全相同的小正方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为、宽为,下列是四位同学对该大长方形的判断,其中不正确的是()A.大长方形的长为6B.大长方形的宽为5C.大长方形的周长为11D.大长方形的面积为90二、填空题(共6小题,每小题3分,满分18分)9.计算: = .10.一元二次方程(2x+1)(x﹣3)=1的一般形式是.11.已知,则= .12.已知关于x的一元二次方程x2+x+k=0没有实数根,则k的取值范围是.13.如果是整数,则正整数n的最小值是.14.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是.三、解答题(共10小题,满分78分)15.计算:×﹣.16.计算: +﹣.17.解方程:2x2+x=0.18.解方程:x(x﹣2)=2x+1.19.已知关于x的方程x2﹣(2k+1)x+k2+1=0有实数根,求k的取值范围.20.请在方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2,4,求①△ABC的面积;②求出最长边上高.21.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形的两条边长,求此等腰三角形的周长.22.如图,菱形ABCD中,对角线AC、BD交于点O,已知AC=2,BD=4,作AE⊥BC于点E,求AE的长.23.某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?24.如图,在矩形ABCD中,AB=8cm,BC=6cm,动点E从点A出发.以2cm/s的速度沿射线AD方向运动,以AE为底边,在AD的右侧作等腰直角角形AEF,当点F落在射线BC上时,点E停止运动,设△AEF与矩形ABCD重叠部分的面积为S,运动的时间为t(s).(1)当t为何值时,点F落在射线BC上;(2)当线段CD将△AEF的面积二等分时,求t的值;(3)求S与t的函数关系式;(4)当S=17时,求t的值.2016-2017学年吉林省长春市名校调研九年级(上)第一次月考数学试卷(市命题)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列各式中,是二次根式的是()A.πB.C.D.【考点】二次根式的定义.【分析】根据形如(a≥0)的式子叫做二次根式进行分析.【解答】解:A、不是二次根式,故此选项错误;B、不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、不是二次根式,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,关键是注意中a≥0.2.下列二次根式中的取值范围是x≥3的是()A.B.C.D.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数分别计算出x的取值范围,进而得到答案.【解答】解:A、3﹣x≥0,解得x≤3,故此选项错误;B、6+2x≥0,解得x≤﹣3,故此选项错误;C、2x﹣6≥0,解得x≥3,故此选项正确;D、x﹣3>0,解得x>3,故此选项错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握被开方数为非负数.3.若x2m﹣1+10x+m=0是关于x的一元二次方程,则m的值应为()A.m=2 B.m= C.m= D.无法确定【考点】一元二次方程的定义.【分析】根据一元二次方程的定义进行解答.【解答】解:依题意,得2m﹣1=2,解得 m=.故选:C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).4.方程2x(x+6)=5(x+6)的解为()A.x=﹣6 B.x= C.x1=﹣6,x2= D.x1=6,x2=﹣【考点】解一元二次方程-因式分解法.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程移项得:2x(x+6)﹣5(x+6)=0,分解因式得:(x+6)(2x﹣5)=0,可得x+6=0或2x﹣5=0,解得:x1=﹣6,x2=.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.下列根式中,不是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6.将方程x2﹣6x﹣5=0化为(x+m)2=n的形式,则m,n的值分别是()A.3和5 B.﹣3和5 C.﹣3和14 D.3和14【考点】解一元二次方程-配方法.【分析】利用配方法:先把常数项移到等号的右边,然后等式两边同时加上一次项系数一半的平方,即可将原方程配成(x+m)2=n的形式.【解答】解:∵x2﹣6x﹣5=0,∴x2﹣6x=5,∴x2﹣6x+9=5+9,∴(x﹣3)2=14,∴m=﹣3,n=14.故选C.【点评】此题考查了配方法解一元二次方程的知识.此题难度不大,注意掌握掌握配方法的一般步骤.7.小芳妈妈要给一幅长为60cm,宽为40cm的矩形十字绣的四周装裱一条宽度相同的金色边框制成一幅矩形挂图,使整幅挂图面积是3400cm2.设金色边框的宽度为x cm,则x满足的方程是()A.x2+50x﹣1400=0 B.x2﹣65x﹣250=0C.x2﹣30x﹣1400=0 D.x2+50x﹣250=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】设金色边框的宽度为x cm,先求出装裱之后的长和宽,然后根据面积为3400列方程.【解答】解:设金色边框的宽度为x cm,由题意得,(60+2x)(40+2x)=3400,整理得:x2+50x﹣250=0.故选D.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.如图,在数学课上,老师用5个完全相同的小正方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为、宽为,下列是四位同学对该大长方形的判断,其中不正确的是()A.大长方形的长为6B.大长方形的宽为5C.大长方形的周长为11D.大长方形的面积为90【考点】二次根式的应用.【分析】根据题目中的数据可以分别求得大长方形的长、宽、周长和面积,从而可以解答本题.【解答】解:∵小长方形的长为=3、宽为=2,∴大长方形的长为:,大长方形的宽为:,大长方形的周长是:,大长方形的面积为:,故选项C错误,选项A、B、D正确;故选C.【点评】本题考查二次根式的应用,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(共6小题,每小题3分,满分18分)9.计算: = 31 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质计算即可.【解答】解:原式=31,故答案为:31.【点评】本题考查的是二次根式的性质与化简,掌握二次根式的性质: =|a|是解题的关键.10.一元二次方程(2x+1)(x﹣3)=1的一般形式是2x2﹣5x﹣4=0 .【考点】一元二次方程的一般形式.【分析】把方程化成ax2+bx+c=0(a≠0)形式.【解答】解:(2x+1)(x﹣3)=1,2x2﹣6x+x﹣3=1,2x2﹣5x﹣4=0,故答案为:2x2﹣5x﹣4=0.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.11.已知,则= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据有理数的运算,可得答案.【解答】解:由,得a﹣2=0,b﹣4=0,解得a=2,b=4.=1,故答案为:1.【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.12.已知关于x的一元二次方程x2+x+k=0没有实数根,则k的取值范围是k<.【考点】根的判别式.【分析】根据根的判别式得出12﹣4×1×k<0,求出即可.【解答】解:∵关于x的一元二次方程x2+x+k=0没有实数根,∴△<0,即12﹣4×1×k<0,解得:k<,故答案为:k<.【点评】本题考查了解一元二次方程的根的判别式的应用,能正确理解根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根,当b2﹣4ac=0时,方程有两个相等的实数根,当b2﹣4ac<0时,方程没有实数根.13.如果是整数,则正整数n的最小值是 3 .【考点】二次根式的定义.【专题】计算题.【分析】因为是整数,且==2,则3n是完全平方数,满足条件的最小正整数n为3.【解答】解:∵ ==2,且是整数;∴2是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.14.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是 1 .【考点】一元二次方程的解.【分析】一元二次方程ax2+bx+c=0中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.只需把x=1代入一元二次方程ax2+bx+c=0中验证a+b+c=0即可.【解答】解:把x=1代入一元二次方程ax2+bx+c=0中得,a+b+c=0,所以当a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根是1.【点评】本题考查的是一元二次方程的根,即方程的解的定义.解该题的关键是要掌握一元二次方程ax2+bx+c=0中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.三、解答题(共10小题,满分78分)15.计算:×﹣.【考点】二次根式的混合运算.【专题】计算题.【分析】先进行二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣=3﹣=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.计算: +﹣.【考点】二次根式的加减法.【分析】先进行二次根式的化简,再进行二次根式的加减法运算进行求解即可.【解答】解:原式=3+3﹣2=+3.【点评】本题考查了二次根式的加减法,解答本题的关键在于熟练掌握二次根式的化简及二次根式的加减法运算法则.17.解方程:2x2+x=0.【考点】解一元二次方程-因式分解法.【分析】利用提取公因式即可求出x的解【解答】解:x(2x+1)=0,∴x=0,x=﹣【点评】本题考查一元二次方程的解法,对于形如ax2+bx=0的一元二次方程,可利用提取公因式求解.18.解方程:x(x﹣2)=2x+1.【考点】解一元二次方程-配方法.【分析】先去括号,再化为一般形式,移项,配方,用直接开平方法解即可.【解答】解:x(x﹣2)=2x+1,x2﹣2x=2x+1,x2﹣4x+4=5,(x﹣2)2=5.∴x﹣2=,即x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.已知关于x的方程x2﹣(2k+1)x+k2+1=0有实数根,求k的取值范围.【考点】根的判别式.【分析】根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解不等式即可得出结论.【解答】解:∵方程x2﹣(2k+1)x+k2+1=0有实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)≥0,解得:k≥.【点评】本题考查了根的判别式,根据方程有实数根得出关于k的一元二次不等式是解题的关键.20.请在方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2,4,求①△ABC的面积;②求出最长边上高.【考点】二次根式的应用;三角形的面积.【专题】作图题.【分析】①根据题意画出图形,已知AC的长为2,观察可得其边上的高BD的长为2,从而不难求得其面积.②根据第(1)问求得的面积,再利用面积公式即可求得其边上的高.【解答】解:①如图∵AC=2,BD=2∴S△ABC=AC×BD=2,②∵最长边AB=2,设最长边上的高为h,则S△ABC=AB×h=2,∴h=,即最长边上高为.【点评】此题主要考查学生对三角形面积公式的理解及运用能力.21.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形的两条边长,求此等腰三角形的周长.【考点】根与系数的关系;一元二次方程的解;等腰三角形的性质.【分析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【解答】解:将x=2代入方程,得:4﹣4m+3m=0,解得:m=4.当m=4时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=4<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=14.【点评】本题考查了一元二次方程的解、等腰三角形的性质以及三角形的三边关系,根据三角形的三边关系找出三角形的三条边长是解题的关键.22.如图,菱形ABCD中,对角线AC、BD交于点O,已知AC=2,BD=4,作AE⊥BC于点E,求AE的长.【考点】菱形的性质.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=,BO=BD=2,AO⊥BO,∴BC==,∴S菱形ABCD=AC′BD=×2×4=8,∵S菱形ABCD=BC×AE,∴BC×AE=28,∴AE==.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.23.某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?【考点】一元二次方程的应用.【分析】(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书20(1+x)2万册,即可列方程求解;(2)利用求得的百分率,进一步求得2017年年底图书馆存图书数量即可.【解答】解:(1)设年平均增长率为x,根据题意得20(1+x)2=28.8,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该图书馆这两年图书册数的年平均增长率为20%;(2)28.8(1+0.2)=34.56(万册)答:预测2016年年底图书馆存图书34.56万册.【点评】本题考查了列二元一次方程解实际问题的运用,二元一次方程的解法的运用,增长率问题的数量关系的运用,解答时根据增长率问题的数量关系建立方程是关键.24.如图,在矩形ABCD中,AB=8cm,BC=6cm,动点E从点A出发.以2cm/s的速度沿射线AD方向运动,以AE为底边,在AD的右侧作等腰直角角形AEF,当点F落在射线BC上时,点E停止运动,设△AEF与矩形ABCD重叠部分的面积为S,运动的时间为t(s).(1)当t为何值时,点F落在射线BC上;(2)当线段CD将△AEF的面积二等分时,求t的值;(3)求S与t的函数关系式;(4)当S=17时,求t的值.【考点】四边形综合题.【分析】(1)由矩形的性质和等腰直角三角形的性质得出FH=8cm,再由运动得出FH=t,即可;(2)由等腰直角三角形的性质得出斜边上的高也是中线,根据三角形的中线把三角形AEF面积平分,判断出点F在CD上,即可;(3)分三种情况先利用矩形和运动的特点显示出三角形高,底边和梯形的上下底,高,再利用三角形和梯形的面积公式求解;(4)先判断出面积是17时,运动时间在3<t≤6内,再直接代入函数关系式中,即可.【解答】解:(1)如图1,过点F作FH⊥AD于H,在矩形ABCD中,AB=8cm,BC=6cm,∠BAD=90°,∵点F落在射线BC上,∴FH=8cm,∴t=8s,(2)如图2,∵△AEF是等腰直角三角形,∴AE边上的高线也是该边的中线,∴点F在边CD上时,CD将△AEF的面积二等分,∵FD是直角三角形的斜边的直线,∴由运动知,FD=AD=6=t,∴t=6s,(3)当0<t≤3时,如图3,过点F作FH⊥AD,由运动知,AE=2t,∴FH=AE=t,∴S=AE×FH=t2,当3<t≤6时,如图4,过点F作FH⊥AD,由运动知,AE=2t,∴DG=DE=2t﹣6,FH=t,DH=6﹣t,∴S=S△AEF+S梯形DHFG=×AE×FH+(DG+FH)×DH=××2t×t+(2t﹣6+t)×(6﹣t)=﹣t2+12t ﹣18,当6<t≤8时,如图5,过点F作FH⊥AD,∴DG=AD=6∴S=S△ADG=AD×GD=18;∴S=,(4)由函数关系式知,S=17的运动时间在3<t≤6中,将S=17代入S=﹣t2+12t﹣18中,∴﹣t2+12t﹣18=17,∴t=7(舍)或t=5∴当S=17时,t的值为5s.【点评】此题是四边形综合题,主要考查了矩形的性质,等腰直角三角形的性质,梯形,三角形的面积公式,用运动时间表示线段是解本题的关键.。
初三数学命题说明
初三数学期末考试
命题说明
一、考试科目:初三数学
二、考试时量与总分:时量:120分钟;总分:120分
五、解答题(23、24小题)
每小题9分,共18分
23题:列一次方程(组)解应用题;24题:直线形与相似的证明与计算。两到三问。
六、解答题(25、26小题)
每小题10分,共20分
25题:函数的实际应用题;26题:综合题,以二次函数为主线,渗透圆。
五、难度控制:0.7比例:
教材内容
分值
要求
数与式
25
1、代数、几何分数占比约为80:40。
2、几何的分数没有包括24、26两题中可能出现的四边形、圆、解直角三角形的相关知识,所以左边的分数统计中几何总分没有40分。
方程与不等式
25
函数及图象
30
相交线、平行线
6
全等三角形
14
相似三角形
14
四、试卷题型及分值:
题型
分值
要求
一、选择题(1—12小题)
每小题3分,共36分
二、填空题(13—18小题)
每小题3分,共18分
三、解答题(19、20小题)
每小题6分,共12分
19题:实数的运算(不超过4项);
20题:化简求值。
四、解答题(21、22小题)
每小题8分,共16分
21题:反比例函数、一次函数相关;
22题:三角形全等的证明与计算;均两问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教
第1~3单元
第1~6单元
第1~9单元
第1~12单元
牛津
第1单元
第1~3单元
第1~5单元
上册,下册第1单元
外研
第1~3模块
第1~6模块
第1~9模块
第1~12模块
物理
人教
第13~14章
第13~15章
第13~16章
第13~17章
沪科
第12~13章
第12~14章
第12~15章
第12~16章
北师大
第10章
第10~11章
第10~12章
第10~13章
沪粤
第11~12章
第11~13章
第11~14章
第11~15章
化学
人教
第1~2单元
第1~4.2单元
第1~6单元
第1~8单元
思品
人教
第1单元
第1~2单元
第1~3单元
第1~4单元
人民
第1单元
第1~2单元
第1~3单元
第1~4单元
粤教
第1单元
第1~2单元
第1~3单元
第1~4单元
上册,下册第4单元
数学
沪科
第22.1~22.5章
第22.1~23.4
第22.1~24章
上册,下册25.1~25.5
人教
第21.1~22.3章
第21.1~24.2章
第21.1~25.2章
上册,下册26.1~26.2章
北师大
第1.1~2.4章
第1.1~3.2章
第1.1~5.3章
上册,下册1.1~1.5章
皖智教育2013~2014学年度九年级第一学期月考进度参考表(拟研发的版本)
年级
科目
版本
月考一
月考二(期中)
月考三
月考四(期末)
分值
时间
九
年
级
第
一
学
期
语文
人教
上册第1、6单元
上册第1、2、3、6单元
上册第1~6单元
上册,下册第5、6单元
与
中
考
分值相同来自苏教上册第1、5单元
上册第1、2、3、5单元
上册第1~6单元
历史
人教
第1~9课
第1~15课
第1~23课
上册,下册第1~9课
北师大
第1~9课
第1~17课
第1~25课
上册,下册第1~10课
建议考试时间
国庆节前后
11月上旬
12月上旬
元月中