新人教版七年级下册第六章实数全章教案24562
七年级数学下册 6 实数教案 (新版)新人教版
第六章实数1.理解算术平方根、平方根、立方根等概念及其有关概念的意义,并会用根号表示它们.2.会求平方根、算术平方根和立方根.3.理解有理数、无理数以及实数的概念,知道这些数和数轴上的点的对应关系.4.会进行实数的运算.1.抓住新旧知识的联系,灵活运用乘方、开方、有理数的知识,实现知识的迁移,并使新旧知识融会贯通.2.深刻理解并掌握类比的方法,并针对所学的知识启发学生深入思考,交流、探讨,将知识学深、学透、学活.3.重视对数学思想方法的掌握与运用,达到优化解题思路、简化解题过程的目的.培养认真观察、仔细思考的学习习惯,培养从生活中发现、解决数学问题的意识.本章教材在初中数学中具有重要的地位,本章知识是有理数到实数的扩展,是进行其他学习的理论基础和运算基础(如一元二次方程、解三角形、函数、分式等),几乎贯穿了整个数学体系之中.本章主要学习了算术平方根、平方根、立方根的概念,无理数和实数的概念及实数的运算.教材从典型的实际问题入手,首先介绍算术平方根,给出算术平方根的概念和符号表示.在学习算术平方根的基础上学习平方根,利用乘方与开方互为逆运算的特点探讨数的平方根的特征.类比平方根学习立方根,探讨立方根的特征,最后学习无理数及实数的运算.【重点】1.算术平方根、平方根、立方根、实数的概念.2.会求某些非负数的平方根及某些数的立方根.3.知道实数与数轴上的点一一对应,并能进行实数的运算.【难点】求非负数的平方根、算术平方根及算术平方根与平方根的区别与联系.1.关于平方根与算术平方根的学习.(1)通过让学生计算两个不为零的互为相反数的数的平方是同一个正数,总结出“一个正数有两个平方根,它们互为相反数”的性质,加深感性认识.(2)帮助学生正确认识算术平方根的两个非负性:一是被开方数的非负性,即只有非负数才有算术平方根(在中a≥0);二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数(≥0,a≥0).2.关于立方根的学习.(1)引导学生运用类比平方根的方法来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清两者的区别与联系,并适当分析结论不同的原因.(2)要引导学生注意转化思想,将求负数的立方根问题转化为求正数的立方根问题.3.关于无理数与实数的学习.(1)引导学生复习有关有理数的知识,让学生了解有理数包括有限小数和无限循环小数,为学习无理数做好准备.引导学生用数轴上的点来表示有理数、无理数,将所学知识联系起来,使学生了解无理数的存在性.(2)引导学生分清“无限不循环小数”与“无限循环小数”的区别,理解无限循环小数可化成分数,它是有理数;而无限不循环小数不能化成分数,它是无理数,从而启发学生总结有理数和无理数的区别在于是否能够分数化,真正分清有理数和无理数.(3)要引导学生明确有理数的运算法则、运算律同样适用于无理数和实数,使学生能够按照有理数的运算法则、运算律进行无理数和实数的运算.6.1平方根3课时6.2立方根1课时6.3实数3课时单元概括整合1课时6.1平方根1.理解算术平方根的概念,领会乘方与开方的关系.2.会用计算器求一个数的算术平方根,理解被开方数与算术平方根大小的关系.3.会用“夹值法”求一个数算术平方根的近似值.4.掌握平方根的概念,明确平方根和算术平方根之间的区别和联系.1.通过平方根的学习,建立初步的数感和符号感,为学习实数做准备.2.通过求算术平方根的近似值,培养学生勇于探索的精神.1.通过探索活动培养学生克服困难的精神.2.通过解决生活中的实际问题,帮助学生体验数学与生活的紧密联系.3.培养学生从多方面、多角度分析问题、解决问题的思想意识,养成综合分析问题的习惯.【重点】1.平方根的概念和算术平方根.2.夹值法估计一个(无理)数的大小.【难点】1.用夹值法估计一个(无理)数的大小.2.平方根和算术平方根的区别和联系.第课时1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的.2.通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,提高学习热情.【重点】算术平方根的概念.【难点】根据算术平方根的概念正确求出非负数的算术平方根.【教师准备】教材章前图的投影图片.【学生准备】复习平方的概念.导入一:同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(米/秒)而小于第二宇宙速度v2(米/秒).v1,v2的大小满足=gR,=2gR.其中,g是物理中的一个常量,R是地球的半径.怎样求v1,v2呢?即使给出g,R的对应值,利用我们已学过的知识,也很难求出.这就要用到平方根的概念,也就是本章的主要学习内容.[设计意图]借助于教材章前图的内容,使学生认识到生活中的一些问题需要用新的知识去解决,进而增强学生的学习欲望和进取精神.导入二:学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?你一定会算出边长应取5 dm.说一说你是怎样算出来的.因为S=25 dm2,所以这个正方形画布的边长应取5 dm.上面的计算过程,就是求一个数是由什么数的平方得来的.本课时我们就要学习相关的内容.[设计意图]用教材的问题作为导入材料,能够和学生的课前预习活动对接,可以提高学生的预习效果.导入三:丽丽家新购的一套住房,客厅是长与宽之比为5∶2的长方形,面积为40 m2,求这间客厅的长与宽各为多少.要求客厅的长与宽,依题意可设客厅的长与宽分别是5x m,2x m,可得2x·5x=40,即x2=4,那么怎样才能由x2=4求x呢?[设计意图]从学生能够理解的生活事例入手,帮助学生感受引入平方根概念的必要性.[过渡语](针对导入二)如果小鸥想要裁出的正方形画布面积分别是下表中的数字,怎样求这个正方形的边长呢?1.算术平方根.思路一填写表格后回答问题.正方形的面积/dm2191636正方形的边长/dm1346(1)写出表格中正方形边长的计算过程.(2)上述过程可以概括成怎样的问题?(3)怎样用数学语言描述这个运算过程?(这个运算过程是什么呢?)问题提示:(1)12=1,32=9,42=16,62=36,=.(2)已知一个正数的平方,求这个正数的问题.(3)例如,已知一个正数的平方为a,求这个正数x问题.(可以用不同的字母表示)[设计意图]第(1)问意在复习平方的知识,为学习平方根知识做准备.第(2)问是从平方根的角度帮助学生思考.第(3)问是进一步引导学生通过抽象思维去理解平方根.归纳总结:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.思路二学生阅读教材第40页例1前的内容,回答问题.(1)什么是算术平方根?一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.(2)算术平方根怎么表示?a的算术平方根记为,读作“根号a”,a叫做被开方数.(3)0的算术平方根是多少?0的算术平方根是0.处理方式:学生阅读教材后交流;老师指定部分学生总结问题;总结平方根相关概念.强调:书写时根号一定要把被开方数盖住.讨论:为什么0的算术平方根是0?2.例题讲解.求下列各数的算术平方根.(1)100;(2);(3)0.0001.〔解析〕本题三个数的共同特点是都是正数,符合算术平方根的前提条件.无论是正整数、正分数还是正小数,都有自己的算术平方根.求算术平方根不仅要明确算术平方根的含义,更要习惯用数学方式表达算术平方根的求解过程.解:(1)因为102=100,所以100的算术平方根是10,即=10.(2)因为=,所以的算术平方根是,即=.(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即=0.01.追问:从上面的例题中,你发现被开方数和算术平方根之间有什么关系?提示:被开方数越大,对应的算术平方根越大,这个结论对所有的正数都成立.[过渡语]根据例1中的被开方数,我们都能猜到这个数是哪个数的平方,那么怎么求类似7,8,9这些数的算术平方根呢?(补充)求下列各数的算术平方根.(1)36;(2)0.09;(3);(4)(-4)2;(5)0;(6)10.〔解析〕算术平方根的求法:一个正数的算术平方根就是要找一个正数,使它的平方等于这个数.解:(1)因为62=36,所以36的算术平方根是6,即=6.(2)因为0.32=0.09,所以0.09的算术平方根是0.3,即=0.3.(3)因为=,所以的算术平方根是,即 =.(4)因为42=(-4)2=16,所以(-4)2的算术平方根是4,即=4.(5)0的算术平方根是0,=0.(6)10的算术平方根是.[知识拓展]求一个数的算术平方根与求一个正数的平方恰好是互逆的过程,因此,求一个数的算术平方根实际上可以转化为求一个数的平方的逆运算,只不过只有正数和0才有算术平方根,负数没有算术平方根.1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.a的算术平方根记为,读作“根号a”,a叫做被开方数.3.规定:0的算术平方根是0.1.9的算术平方根为()A.3B.±3C.-3D.81解析:因为32=9,所以9的算术平方根为3.故选A.2.下列说法正确的是()A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根解析:如果x2=a(x>0),则这个正数x是a的算术平方根,由此判断各选项.A.=5,故选项正确;B.=4,所以16的算术平方根是4,故选项错误;C.=6,故选项错误;D.=0.1,故选项错误.故选A.3.一个数的算术平方根是它本身,这个数是()A.1B.-1C.0D.1或0解析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.若一个数的算术平方根是它本身,可以知道这个数是0或1.故选D.4.100的算术平方根是,0.36的算术平方根是.解析:本题求100和0.36的算术平方根,就是求哪个正数的平方等于100或0.36,由此即可解决问题.因为102=100,所以100的算术平方根为10,因为0.62=0.36,所以0.36的算术平方根为0.6.答案:100.6第1课时1.算术平方根定义符号表示0的算术平方根2.例题讲解例1例2一、教材作业【必做题】教材第41页练习第1,2题.【选做题】教材第47页习题6.1第1题.二、课后作业【基础巩固】1.一个数只要存在算术平方根,那么这个数()A.只有一个并且是正数B.一定小于这个数的算术平方根C.必是一个非负数D.不可能等于这个数的算术平方根2.49的算术平方根的相反数是()A.7B.-7C.±7D.±3.下列命题中正确的有()①1的算术平方根是1;②(-1)2的算术平方根是-1;③-4没有算术平方根;④一个数的算术平方根是它本身,这个数只能是零.A.1个B.2个C.3个D.4个4.求下列各数的算术平方根.(1)0.49;(2);(3).5.求下列各式的值.(1)-;(2);(3).【能力提升】6.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数.其中不正确的有()A.5个B.4个C.3个D.2个7.一个数的算术平方根为a,则比这个数大5的数是()A.a+5B.a-5C.a2+5D.a2-58.下列运算正确的是()A.=9B.|-3|=-3C.-=-3D.-32=99.(±4)2的算术平方根是,的算术平方根是.10.已知+(b+2)2=0,那么a+b的值为.11.计算.(1);(2)-;(3)++-.【拓展探究】12.已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a+2b的算术平方根.13.计算下列题目:=,=,=,=,=,=,=.根据计算结果回答下列问题.(1)一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算=.【答案与解析】1.C(解析:因为任何数的平方都不可能为负,都是非负数,所以负数没有算术平方根,只有正数或0才有算术平方根,所以本题应选C.)2.B(解析:49的算术平方根是7,其相反数是-7.故选B.)3.B(解析:根据算术平方根的定义可知:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,结合命题与定理的定义可得答案.①1的算术平方根是1,故此项正确;②(-1)2=1,1的算术平方根是1,故此项错误;③因为-4<0,所以-4没有算术平方根,故此项正确;④一个数的算术平方根是它本身,这个数是0或1,故此项错误.所以正确的有2个.故选B.)4.解:(1)=0.7. (2)=. (3)=.5.解:(1)-=-0.1. (2)=5. (3)=10-3.6.B(解析:根据算术平方根的定义依次分析各小题即可.①负数没有算术平方根;②0的算术平方根是0;③当a<0时,a2的算术平方根是-a;④(π-4)2的算术平方根是4-π,故错误;⑤算术平方根不可能是负数,正确.故选B.)7.C(解析:首先根据算术平方根的定义求出这个数,然后利用已知条件即可求解.因为一个数的算术平方根为a,所以这个数为a2,所以比这个数大5的数是a2+5.故选C.)8.C(解析:A.是求9的算术平方根,所以是3,故选项错误;B.负数的绝对值是正数,结果是3,故选项错误;C.-=-3,故选项正确;D.-32=-9,故选项错误.故选C.)9.4(解析:因为(±4)2=16,42=16,所以(±4)2的算术平方根是4.因为62=36,所以=6,所以的算术平方根是.)10.0(解析:根据非负数的意义:如果两个非负数的和等于0,那么这两个数都为0可知a-2=0,b+2=0,a=2,b=-2,则a+b=2-2=0.)11.解:(1)===5. (2)-=-=-9. (3)++-=++-=1+=.12.解:因为2a-1的算术平方根是3,3a+b-1的算术平方根是4,所以2a-1=9,3a+b-1=16,解得a=5,b=2,所以a+2b=9,所以a+2b的算术平方根是3.13.解:30.760.280(1)不一定等于a,=|a|=(2)π-3.14借助于平方知识,通过逆向思维的类比方式,学生比较好地理解了算术平方根的定义,同时注重强调了对0的算术平方根的理解.学生根据先前的平方知识,会意识到一个正数的平方根会有两个.这就需要特别强调算术平方根定义当中的“一个正数”的限制.在课时的教学过程中,对这点没有做出特别的强调.课前做好平方知识的复习,为学习平方根做准备.引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识.注意引导学生发现被开方数与对应的算术平方根之间的关系.练习(教材第41页)1.提示:(1)0.05. (2)9. (3)3.2.提示:(1)1. (2). (3)2.求下列各式的值.(1);(2) ;(3);(4).〔解析〕(1)就是求484的算术平方根.(2) 就是求12的算术平方根.(3)就是求20.25的算术平方根.(4)8×9×10×11+1=7921,就是求7921的算术平方根.解:(1)因为222=484,所以=22.(2)因为==12,所以 =.(3)因为4.52=20.25,所以=4.5.(4)因为8×9×10×11+1=7921,892=7921,所以=89.第课时1.会用计算器求一个数的算术平方根.2.理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.3.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.通过计算近似值,比较两个算术平方根的大小,培养学生的细心探求精神.【重点】计算算术平方根的两种方法;理解无限不循环小数.【难点】夹值法及估计一个数(无理数)的大小.【教师准备】教材图6.1-1的投影图片.【学生准备】1.复习算术平方根的相关知识.2.计算器.导入一:能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?如图所示,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2 dm2的大正方形.你知道这个大正方形的边长是多少吗?设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=.所以大正方形的边长是 dm.问题:到底有多大呢?导入二:3.1415926…,看到这个数字大家一定会想到圆周率吧.圆的周长和直径的比是一个无限不循环小数,除此之外,像,等是不是无限不循环小数呢?[过渡语]-到底有多大呢?我们一起来探索下吧.1.探索的大小.师:因为12=1,22=4,所以1<<2.这里我们只是粗略地知道了的大小,还不是很精确,这就需要我们继续探索下去.怎么继续下去呢?大家想个办法吧.生:取一个大于1且小于2的数试一试.师:从1.1到1.9这些数字我们怎么选呢?生:通过估算和计算,我们发现1.42=1.96,1.52=2.25,所以1.4<<1.5.师:用刚才的办法还能继续探索下去吗?生:因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415……师:我们可以如此进行下去,会得到的更精确的近似值.但我们无论进行多少次探索,都不会有一个最终的数值,可见=1.41421356237…,它是一个无限不循环小数.实际上,许多正有理数的算术平方根(例如,,等)都是无限不循环小数.2.用计算器求算术平方根.[过渡语]像前面探索一个数的算术平方根的方法无疑是繁琐的,我们通过计算器可以很轻松地解决求算术平方根的问题.大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).(教材例2)用计算器求下列各式的值.(1);(2)(精确到0.001).〔解析〕正确选择计算器上的功能键是关键,对算术平方根的值要根据要求或需要进行取舍.同时需要注意计算器上显示的数值是一个近似值.解:(1)依次按键3136=,显示:56.所以=56.(2)依次按键2=,:1.414213562.所以≈1.414.[过渡语]计算器为人们进行复杂的计算提供了巨大的方便,比如我们来看引言中提出的问题.由=gR,=2gR,得v1=,v2=,其中g≈9.8,R≈6.4×106.用计算器求v1和v2(用科学记数法把结果写成a×10n的形式,其中a保留小数点后一位),得v1=≈7.9×103,v2=≈1.1×104.因此,第一宇宙速度v1大约是7.9×103 m/s,第二宇宙速度v2大约是1.1×104 m/s.3.用计算器探究.(1)利用计算器计算下表中的各式,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?…………(2)用计算器计算(精确到0.001),并利用你在(1)中发现的规律说出,,的近似值,你能根据的值说出的值是多少吗?问题提示:(1)如下表所示:………0.250.792.57.92579250…从表中可以发现:被开方数的小数点每向右(或向左)移动两位,开方后的结果向相同的方向移动一位.(2)因为≈1.732,≈0.1732,≈17.32,≈173.2,根据的值不能说出是多少.4.估计算术平方根的值解决问题.[过渡语]在生活中,我们经常遇到估计一个数的大小的问题.请看下面的例子.(教材例3)小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?〔解析〕本题的核心是能否按照要求裁出一个长宽比为3∶2、面积为300 cm2的长方形,通过列方程的办法可以计算出满足这样条件的长方形的长和宽,再与正方形的边长做对比,就可以得出相应的结论.解:设长方形纸片的长为3x cm,宽为2x cm,根据边长与面积的关系得:3x·2x=300,6x2=300x2=50,x=.因此长方形纸片的长为3 cm.因为50>49,所以>7.由上可知3>21,即长方形纸片的长应该大于21 cm.因为=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.【思考】如果一个数的平方等于19,这个数是多少?[知识拓展]确定x2=a(a≥0)中正数x的近似值的方法:1.确定正数x的整数部分.根据平方的定义,把x夹在两个连续的正整数之间,确定其整数部分.2.确定x的小数部分十分位上的数字.将这两个整数平方和的平均数与x比较,预测十分位上数字的取值范围,也可以采用试验的方法进行估计.在求某些数的算术平方根时,当有些数据比较大或不易求出时,便可以利用计算器求算术平方根,用计算器上的“”键.一般先按“”键,然后再输入数据,再按“=”键即可.在没有计算器或不允许用计算器的情况下,可进行估算,我们通常取与被开方数相近的两个完全平方数的算术平方根相比较.1.我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:a = ,16,4,则他按键1600,显示结果应为.解析:根据被开方数扩大到原来的100倍,算术平方根扩大到原来的10倍直接解答即可.故填40.2.已知a,b为两个连续的整数,且a<<b,则a+b=.解析:因为<<,所以3<<4,因为a<<b,所以a=3,b=4,所以a+b=3+4=7.故填7.3.用计算器求下列各式的值(结果保留4个有效数字).(1);(2);(3).解:(1)依次按键734,显示27.09243437,所以≈27.09.(2)依次按键0.012345,显示0.111108055,所以≈0.1111.(3)依次按键5,显示2.236067977,所以≈2.236.4.小川的房间地面面积为17.6 m2,房间地面恰好由110块相同的正方形铺成,每块地砖的边长是多少米?解:设每块地砖的边长是x m,则110x2=17.6,x2=0.16,所以x=0.4.答:每块地砖的边长是0.4 m.第2课时1.探索的大小2.用计算器求算术平方根例13.用计算器探究4.估计算术平方根的值解决问题例2一、教材作业【必做题】教材第44页练习第1,2题.【选做题】教材47页习题6.1第6题.二、课后作业【基础巩固】1.若m=-4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<52.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间3.用计算器计算:-3.142≈.(结果保留三个有效数字)4.小杰卧室地板的总面积为16平方米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长.5.圆的面积S(cm2)与半径r(cm)之间的关系式为S=πr2,现要制作一块面积为49π cm2的圆形零件,此零件的半径应为多少厘米?【能力提升】6.如图所示,方格图中小正方形的边长为1,将方格中阴影部分图形剪下来,再把剪下的部分重新剪拼成一个正方形,那么所拼成的这个正方形的边长为()A. B.2 C. D.7.用计算器估算:若2.6456<<2.6459,则a的整数值是.8.如果的整数部分为a,小数部分为b,那么a-b=.9.学校组织集邮展览,某同学用30枚长3 cm,宽2.5 cm的邮票恰好拼成了一个正方形,你能求出这个正方形的边长吗?【拓展探究】10.请你观察、思考下列计算过程:因为112=121,所以=11,同样因为1112=12321,所以=111,由此猜想=.11.用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.【答案与解析】1.B(解析:先估算出在哪两个整数之间,即可得到结果.因为6=<<=7,所以2<-4<3,故选B.)2.B(解析:根据正方形的面积先求出正方形的边长,然后估算即可得出答案.设正方形的边长为x,因为正方形面积是15,所以x2=15,故x=.因为9<15<16,所以3<<4.故选B.)3.0.464(解析:首先利用计算器求出13的算术平方根,然后即可求出结果.-3.142≈3.6056-3.142=0.4636≈0.464.)4.解:每块地板砖的面积=平方米,所以每块地板砖的边长==(米).5.解:设此零件的半径为r cm,由题意得49π=πr2,解得r=7.所以此零件的半径为7 cm.6.C(解析:根据题意可得,所拼成的正方形的面积是5,所以正方形的边长是.故选C.)7.7(解析:因为2.6456=,2.6459=,所以a的整数值是7.)8.4-(解析:先求出的范围,即可求出a,b的值,再代入求出即可.因为2<<3,所以的整数部分为a=2,小数部分是b=-2,所以a-b=2-(-2)=4-,故答案为4-.)9.解:一枚邮票的面积为3×2.5=7.5(cm2),30枚邮票的总面积为7.5×30=225(cm2),则正方形的边长为15 cm.10.111111111(解析:因为112=121,所以=11.同样1112=12321,所以=111,…,由此猜想=111111111.)11.解:(1)≈279.3,≈27.93,≈2.793,≈0.2793,≈0.02793. (2)≈0.02550,≈0.2550,≈2.550,≈25.50,≈255.0.规律是:被开方数的小数点向左(右)移动两位,则其算术平方根的小数点就向左(右)移动一位.用“夹值法”探索根式的近似值,其教学过程中蕴含着多种教学目的,如帮助学生深入领会无限不循环小数,为以后得出无理数和实数的概念做准备,同时也可以培养学生勇于探索的精神.本课时在教学的过程中,通过情境引入、师生研讨等方式较好地落实了课程教学目标.在探索近似值的过程中,最初没有让学生利用计算器进行探索,课堂上浪费了一定时间,在利用计算器进行探索的时候,忽略了学生使用计算器的差异.在利用计算器进行近似值探索的时候,可以让学生自己总结一些数的算术平方根的性质.在探索规律的过程中,学生不易直接发现小数点变化的规律,应该进行一定的提示.关注学生对计算器的正确使用,并强调计算器的显示结果只是算术平方根的一个近似值.练习(教材第44页)1.提示:(1)37. (2)10.06. (3)2.24.。
最新人教版七年级数学下册第六章 《实数》教案(第1课时)
本章复习整体设计第一课时教学目标1.结合实际理解算术平方根以及平方根、立方根的概念.2.掌握平方根及算术平方根的区别与联系.3.了解平方根及立方根的工具求法(用数学表、计算器等).教学重难点教学重点:1.平方根、算术平方根和立方根的概念及性质.2.理解实数的有关概念及实数的运算.教学难点:灵活运用算术平方根的非负性解题.教学过程一、平方根设计说明算术平方根、平方根是本章的重点和难点之一,这其中算术平方根、平方根与平方的互逆关系部分学生可能有不适应的地方,实际上逆向思维本身就有难度,再加上平方根与平方不是一对一的数字往来,无形中增加了思维的跨度.本环节的复习围绕着这一点展开,使基础知识更明确,计算更熟练.知识点一:平方根例1 144的算术平方根是________.解析:利用算术平方根的意义求解,得144=12.答案:12例2 169的平方根是________.解析:因为(±13)2=169,所以169的平方根为±13,即±169=±13.用计算器计算.例3 求下列各数的平方根及算术平方根:(1)0.64;(2)3625;(3)0;(4)⎝ ⎛⎭⎪⎫-322. 解:(1)∵(±0.8)2=0.64, ∴0.64的平方根为±0.8,即±0.64=±0.8.0.64的算术平方根是0.8,即0.64=0.8. (2)∵⎝ ⎛⎭⎪⎫±652=3625, ∴3625的平方根为±65,即±3625=±65. 3625的算术平方根为65,即3625=65. (3)∵02=0,∴0的平方根是0,0的算术平方根是0,即0=0.(4)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32, 即±⎝ ⎛⎭⎪⎫-322=±32,⎝ ⎛⎭⎪⎫-322的算术平方根为32,即⎝ ⎛⎭⎪⎫-322=32. 例4 求(-7)的平方的平方根.分析:错解:(-7)的平方的平方根为-7.习惯地认为(-7)2的平方根为-7,没有进一步想到(-7)2=49,求(-7)2的平方根,就是求49的平方根. 解:(-7)的平方是49,而±7的平方等于49,则(-7)的平方的平方根是±7.例5 求81的平方根和算术平方根.分析:错解:81的平方根为±9,算术平方根为9.事实上,81表示的是81的算术平方根9.因此问题实质上是求9的平方根和算术平方根.解:81=9,所以81的平方根为±3,81的算术平方根为3.拓展探究1.25的算术平方根是( ).A .5 B. 5 C .-5 D .±5答案:A2.已知a +2+|b -1|=0,那么(a +b )2 007的值为( ).A .-1B .1C .32 007D .-32 007答案:A3.下列计算正确的是( ).A .(-2)0=0B .3-2=-9 C.9=3 D.2+3= 5答案:C4.计算:(3)2=__________.答案:3课堂练习1.如果一个数的算术平方根等于它本身,则这个数是( ).A .0B .1C .0或1D .除0和1外,还有其他数2.已知数a =3,b =1.732,c =1367500,则它们的大小关系是( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b3.利用计算器判断下列数,最接近5的数是( ).A.24B.245C.26D.2654.已知一个自然数的算术平方根等于a ,则下一个自然数的算术平方根等于( ).A .a +1 B.a 2+1 C.a +1 D .a 2+15.已知5=a ,则0.05等于( ).A .10aB .aC .0.1aD .非上述答案6.如果13是m 的一个平方根,那么m 的另一个平方根是__________.7.181的算术平方根为__________,(-5)2的平方根是__________. 8.( )2≈3,( )2≈10.(可借助于计算器,结果是近似数,保留4个有效数字)9.若a 的算术平方根等于a 的立方根,则3a 2+1=__________.10.若2≤x ≤3,化简(x -2)2+(x -3)2=__________.11.一个正方形的面积是24 cm 2,则这个正方形的周长大约是多少?(精确到0.01)12.已知x 2-9+y +3=0,求x +y 的值.答案:1.C 2.B 3.C 4.B 5.C 6.-13 7.13±5 8.±1.732 ±3.1629.1或4 10.111.设正方形的边长为x cm ,则x 2=24,所以x =24(负的平方根舍去).则正方形的周长为424≈19.60(cm).12.0或-6.教学说明在教学中无论是例题讲解,还是课堂练习,可以采取口答、小组互评、教师评价等方式来进行教学,出现问题时集中交流,讨论,明确症结所在,达到查缺补漏、共同提高的目的.二、立方根设计说明由平方根作为基础,学生接受起立方根来要轻松的多,但是平方根与立方根有明显的差别,首先被开方数的符号,再者结果的个数不同,复习要围绕着这两点来展开,对学生中存在的模糊认识,及时地讨论清楚.知识点一:立方根例1 下列说法正确的是( ). A.64的立方根是2 B.125216的立方根是±56C .(-1)2的立方根是-1D .-3是27的负立方根解析:因为正数的立方根只有一个且为正数,所以B ,C 是错误的,-3是27的立方根的相反数,所以D 错.求一个数立方根的运算,叫做开立方.开立方与立方是互逆运算,因此,可根据这种关系求一个数的立方根.注意:开平方时,被开方数是非负数,开立方时,可以是正数、负数,也可以是0. 两个重要的公式:①(3a )3=a ,②3-a =-3a . 根据3-a =-3a ,可将求负数的立方根问题转化为求正数的立方根问题,这种转化的数学思想,同学们在学习中要注意体会和运用.例2 求下列各式的值:(1)3-0.008;(2)(-30.5)3;(3)334327. 解:(1)3-0.008=-30.008=-0.2.(2)(-30.5)3=-0.5. (3)334327=3⎝ ⎛⎭⎪⎫733=73. 点评:(1)可利用3-a =-3a 进行计算.(2)(3)可利用公式(3a )3=a 计算.与立方根有关的计算问题,应根据题目的特点,灵活选择计算方法.同时,要注意符号的确定.例3 一个圆柱的体积是10 m 3,且底面圆的直径与圆柱的高相等,求这个圆柱底面的半径.(π取3.14,结果保留两个有效数字)解:设圆柱底面圆的半径是r m ,则圆柱的高为2r m ,根据题意,得πr 2·2r =10,3.14r 3=5,即r 3=1.592,所以r =31.592≈1.2(m).答:这个圆柱底面圆的半径约是1.2 m.点评:要求圆柱底面圆的半径,可设其底面圆的半径为r m ,根据体积列出关于r 的等式,进而通过开立方运算解决.在已知正方体的体积求边长、已知球的体积求半径时,常用到求立方根的知识.解决此1.求下列各式中x 的值.(1)4x 3+2716=0;(2)⎝⎛⎭⎪⎫18-12x 3=-0.125. 解:(1)∵4x 3+2716=0,∴x 3=-2764. ∴x =3-2764=-34. (2)∵⎝ ⎛⎭⎪⎫18-12x 3=-0.125, ∴18-12x =3-0.125. ∴18-12x =-0.5. ∴12x =18.5.∴x =37. 2.已知A =m -n m +n +10是m +n +10的算术平方根,B =m -2n +34m +6n -1是4m+6n -1的立方根,求B -A 的立方根.分析:因为A 是m +n +10的算术平方根,可知m -n =2,B 是4m +6n -1的立方根,可知m -2n +3=3,进而求得m ,n 的值,再求出A ,B ,问题得以解决.解:由题意,得m -n =2,即m =n +2,m -2n +3=3,有m =2n .∴n =2,m =4.∴A =16=4,B =327=3.∴B -A =3-4=-1.∴3B -A =3-1=-1.真题精析:1.-27的立方根是________.解析:∵(-3)3=27,∴-27的立方根为-3. 答案:-32.如果x 3=8,那么x =________.解析:∵x 3=8,∴x =38=2.答案:2课堂练习1.给出下面四个结论:①-0.064的立方根是0.4;②81的立方根是±3;③-27的立方根是-3;④116的平方根是14.其中正确的是( ). A .①②③④ B .②③④ C .③ D .④2.下面命题正确的是( ). A.9的平方根是±3 B .平方根等于它本身的数是1C .立方根等于它本身的数是0和±1D .平方根等于立方根的数是1 3.3-32和3-(-3)2( ).A .相等B .互为相反数C .互为倒数D .以上都不对4.使3-2|a |+9为最大的负整数,则a 的值为( ).A .5B .-5C .±5D .不存在5.已知315≈2.466,则3-0.000 015约等于( ).A .-0.246 6B .-0.024 66C .-0.002 466D .-0.000 246 66.已知x 3=125,那么x =__________;已知(x -1)3=8,则x =__________.7.一个正方体形状的木箱子里装满了2立方米的沙子,这个木箱的棱长是__________米(精确到0.01米). 8.64的立方根是__________.9.解方程125x 3-27=0,得x =__________.10.若x 的立方根是-12,则x =__________. 11.计算: (1)3-64;(2)30.000 125;(3)-3338. 12.若一个偶数的立方根比2大,平方根比4小,则这个数是多少?答案:1.C 2.C 3.A 4.C 5.B 6.5 3 7.1.26 8.2 9.35 10.-1811.(1)-4;(2)0.05;(3)-32. 12.10或12或14. 小结与作业复习了平方根与立方根的有关知识.作业整理易错题.评价与反思 本节设计有两个特点:1.平方根与立方根尽管知识点少,但是考点较多,变化较多,因此本节安排了大量的练习题目,便于学生开阔视野,全面地把握问题,同时学会从各个角度、各个侧面认识问题,解决问题,这对培养学生严谨的思维习惯大有好处.2.本节安排了一些最新的中考题,方便教师和学生选择使用,也利于掌握本章内容在中考中考察的深度和广度,同时能提高学生的学习兴趣,积极的应对考试.(设计者:孙长智)。
七年级数学下册 第六章 实数本章复习教案 (新版)新人教版
学习资料本章复习【知识与技能】掌握本章基本概念与运算,能用本章知识解决实际问题.【过程与方法】通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
【情感态度】领悟分类讨论思想,学会类比学习的方法。
【教学重点】本章知识梳理及掌握基本知识点。
【教学难点】应用本章知识解决实际与综合问题.一、知识框图,整体把握【教学说明】1。
通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解1.利用平方根的概念解题在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.例1已知某数的平方根是a+3及2a-12,求这个数。
分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0。
解:根据题意可得,a+3+2a—12=0.解得a=3.∴a+3=6,2a-12=—6.∴这个数是36。
【教学说明】负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2.比较实数的大小除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
例2比较34-与53-的大小。
分析:先比较它们的绝对值34与53的大小,然后由绝对值大的反而小得出结论.可用平方法比较,即分别将34与53平方,平方数大的实数大。
【教学说明】用平方法比较实数的大小,是运用下列推理:当a >0,b >0时,若a2>b2,则a >b ;若a >b >0,则b a >。
3。
实数的运算实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适用.【教学说明】在进行实数混合运算时,首先要观察算式的特点,选择合适的方法进行计算.一般按照先乘方,后乘除,再加减的顺序计算,另外还要注意符号.三、典例精析,复习新知例1 如图所示,数轴上表示3的点是 。
新人教版七年级下册第六章实数全章教案
新人教版七年级下册第六章实数全章教案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
最新人教版初中数学七年级下册第六章《实数》复习教案
最新人教版初中数学七年级下册第六章《实数》复习教案第六章《实数》复习课教学设计一、教学目标1、理解平方根、算数平方根、立方根的概念;理解乘方与开方互为逆运算。
2、理解无理数及实数的有关概念;知道实数与数轴上的点一一对应;理解实数的分类。
3、学生能运用开方运算求复杂算式的平方根或立方根。
4、学生能利用已知平方根立方根求值。
5、学生能利用数形结合解决问题。
二、教学重、难点1、平方根和算术平方根、立方根的概念、性质,无理数与实数的意义理解与应用;2、对数即是形,形也是数的认识与理解。
3、灵活运用已学知识解决问题。
三、教学准备多媒体课件、视频、学案四、教学过程二、课中环节一:组内互助,答疑解惑1、小组内合作交流:解决自主学习过程中遇到的疑难问题。
2、小组代表提出问题。
3、小组之间交流合作:小组无法解决的问题,组与组之间进行解决,教师实时点拨。
4、课前学习达标检测(1):若121x的值为()(2):下列说法中,正确的有()①任何实数的平方根都有两个,且他们互为相反数;②无理数就是带根号的数;③数轴上的所有点都表示实数;④负数的立方根仍为负数。
环节二:巩固提高,归纳提升1、概括提升学案中不易解决的几种问题的类型,形成本节课学习目标并展示学习目标。
2、展示疑难问题一,利用开方运算求复杂算式的平方根和立方根①的算术平方根是_____②的立方根_____③|-0.64|的平方根是_______3、展示疑难问题二,利用已知平方根立方根求值。
①已知3x-4是25的算术平方根,求x的值_____=16-,求x的1、学生组内交流,集思广益,互帮互助,解决自主学习过程中遇到的疑难问题。
2、学生归纳提出疑难问题。
3、组间学生交流答疑解惑4、各层级学生独立完成,各尽其能学生了解本节课的学习目标学生解决问题,完成后提交展示,学生交流解题思路。
小组合作交流,学生点评,分析讲解方法和思路。
所有同学完成后提交展示弄清解析过程,存在困难。
七年级数学下册第6章实数教案(人教版)
3136=56
2 ,
(2) 依次按
显示:1.414 26 562.
2 1.414.
0.0625
0.625
5 用计算器计算,并将计算结果填在表中.
6.25
62.5 625 6250
观察上表,你发现什么了吗? (1)被开方数增大,算术平方根怎样变化? (2)被开方数与算术平方根的小数点有何移动规律? (3)直接写出: 62500 _____;
过程 方法
探究 2 的大小,培养估算意识,了解从两个方向无限逼近的数学思想,并学会 比较开不尽方的正数的算术平方根与有理数的大小.
情感 态度
认识数学和生活实际的密切关系,建立自信心,提高学习热情.
教学重点 教学难点
初步感受无理数,能进行比较 探究 2 大小 教 学 过 程 设 计 二次 备课
教学过程 一、情境引入 能否用两个面积为 1 平方分米的小正方形拼成一个面积为 2 平方分米 的大正方形? 二、探究新知 1.拼法: 按下图所示,很容易用两个面积为 1 的小正方形拼成一个面积为 2 的 大正方形.
年级
七年 级
课题
6.1 主备 平方 人 根 (2)
授课 人
课型
新授
教 学 目 标
知识 技能
1.了解有的正数的算术平方根开不尽方; 2.了解无限不循环小数特点; 3.会用计算器算术求平方根; 4.会比较开不尽方的正数的算术平方根与有理数的大小. 通过拼正方形,体验解决问题方法的多样性,发展学生的形象思维和抽象思维;
9 16
(3)0.25
正数 a 的算术平方根可以用 a 表示,正数 a 的负的平方根,就可以用 符号“- a ”表示,正数 a 的平方根,用符号“± a ”表示,读作“正、 负根号 a ”. 例 5.求下列各式的值: (1)
人教版七年级数学下册第6章实数(教案)
-平方根与立方根的求解:学生可能不熟悉平方根和立方根的求解方法,特别是对于复杂实数。
-突破方法:通过图形和数轴的辅助,直观展示平方根和立方根的概念,并提供多样的练习题。
-实数与数轴的应用:将实数与数轴结合解决实际问题时,学生可能不知道如何操作。
2.提升学生的逻辑思维与推理能力:在学习实数的性质与运算过程中,培养学生逻辑思维和推理能力,使他们能够运用所学知识解决问题。
3.增强学生的空间观念与数形结合思想:通。
4.培养学生的数据分析与实际问题解决能力:在学习实数在实际问题中的应用时,培养学生数据分析能力,使他们能够运用所学知识解决生活中的数学问题。
人教版七年级数学下册第6章实数(教案)
一、教学内容
人教版七年级数学下册第6章“实数”主要围绕以下内容展开:
1.实数的概念与分类:理解实数的定义,掌握实数的分类(有理数、无理数)。
2.实数的性质:探讨实数的性质,如符号、绝对值、相反数、倒数等。
3.实数的运算:掌握实数的加减乘除运算,以及混合运算的法则和技巧。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和运算这两个重点。对于难点部分,如无理数的理解,我会通过具体例子和数轴上的表示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如计算圆的周长。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸片来估算无理数√2的值。
回顾整个教学过程,我认为以下几个方面需要改进:
1.对于无理数的讲解,我应该准备更多生动的例子和实际操作,以帮助学生更好地理解这一概念。
2.在实践活动和小组讨论中,要关注学生的个体差异,鼓励他们独立思考,提高解决问题的能力。
(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)
6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。
教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。
因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。
人教版七年级下册第六章实数教学设计
人教版七年级下册第六章实数教学设计
一、教学目标
1.知识目标:掌握实数的概念与性质,能够实现实数的加减乘除运算。
2.技能目标:能够应用实数进行简单实际问题的解决。
3.情感目标:培养学生的数学思维能力,提高数学学科的探索性与创造
性。
二、教学重点难点
1.教学重点:实数的概念与性质,实数的加减乘除运算。
2.教学难点:实数概念的理解与应用,实数加减乘除运算的实际应用。
三、教学步骤与方法
1. 激发兴趣,导入新课
通过一些有趣、生动的例子,引导学生认识实数的重要性与价值。
例如,通过一些实际应用情景的分析,让学生感受实数的实际应用之处。
2. 知识的教授
(1) 实数的概念与性质
通过教师讲解实数的定义与性质,以引导学生认识实数的本质特征:即包含所有有理数和无理数。
同时,带领学生感受实数与有理数、无理数之间的关系。
(2) 实数的加减运算
通过举例教学与练习,让学生掌握实数的加减运算,了解不同类型的实数加减操作的不同应用。
包括正数加正数、正数加负数、负数加正数、负数加负数的加减乘除运算。
1。
七年级数学下册第六章《实数》教案1(新版)新人教版
实数一、教学目标:知识与技能1、了解实数范围内相反数和绝对值的意义2、了解在有理数范围内的运算法则、运算性质等在实数范围内仍然成立,能熟练的进行实数运算。
教学重点:用类比的方法,引入实数的运算法则、运算律,并能熟练运用这些法则教学难点:能准确无误地进行实数运算教学方法:引导、合作探究二、教学过程:A组(一)填空:1、4的平方根是;的算术平方根2、 3的平方根是;它的算术平方根是3、 8的立方根是;的立方根是的立方根是;的立方根是4、 5的平方根;是的算术平方根5、 8的立方根是;的立方根是;的立方根是;的立方根是6、算术平方根;的平方根是;7、=;=;=;=整数有:;有理数有:;无理数有:9、面积为10的正方形的边长是(二)化简下列各式:(1) (2) (3)(三)解方程(1)3 (2)9=100 (3)(4) (5)=0B组一、填空1、的平方根是;的平方根是2、的平方根是;的立方根是;3、比较大小;4、的绝对值是5、若实数满足,则= 。
6、的整数部分;小数部分二、利用计算器计算(结果精确到0.01)(1)、(2)、(3)四、解答题1、已知,求x,y,z的值。
2、若一个正数的平方根是和,则这个数是什么?3、已知一个正方体的体积是16,另一个正方体的体积是这个正方体的体积的4倍,求另一个正方体的边长和表面积。
三、小结:本节课所学的内容。
四、课后作业:课本P48第8题。
P52第8题。
五、教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
新人教版七年级数学下册数学第六章实数教案文档
第六章 实 数6.1平方根教学目标:知识与技能:理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性。
了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
过程与方法:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
情感态度与价值观:通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过探究活动培养锻炼克服困难的意志,建立自信心,提高学习热情。
教学重难点:重点:算术平方根的概念及求法。
难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学方法:启发、讨论、探究 教学过程:一、新课引入同学们,2008年9月25号,“神州七号”飞船载人出舱飞行取得了圆满成功,实现了中华民族千年的梦想。
那么,卫星离开地球进入正常轨道,它运行的速度在什么范围?这时它的速度要大于第一宇宙速度1v (米/秒)而小于第二宇宙速度2v (米/秒)。
1v 、2v 的大小满足21v =gR ,22v =2gR 。
其中,g 是物理中的一个常量、R 是地球半径。
怎样求出1v 、2v 呢?即使给出g 、R 的对应值,利用我们已学过的知识,也很难求出。
这就要用到平方根的概念,也就是本章的主要学习内容。
这节课我们先学习有关算术平方根的概念。
二、新课讲授问题探究: 学校要举行美术作品比赛,小欧很高兴。
他想裁出一块面积为252dm 的正方形画布,画上他自己的得意之作参加比赛,这块正方形画布的边长应取多少?问题:1.你能算出画布的边长等于多少吗?2.说说你是怎样算出来的? 3.如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为9、16、36、254呢?问题1:你能叙述算术平方根的概念吗?一般地:如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数。
强调:书写时根号一定要把被开方数盖住。
最新版人教版七年级数学下册第六章实数 教案教学设计
第六章实数6.1 平方根 (1)课时1 算术平方根 (1)课时2 用计算器求一个正数的算术平方根 (5)课时3 平方根 (8)6.2 立方根 (12)6.3 实数 (16)课时1 实数及其分类 (16)课时2 实数的运算 (19)6.1 平方根课时1 算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时2 用计算器求一个正数的算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm 2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】 教师归纳出新定义:一般地,如果一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a”,a 叫作被开方数.规定:0的算术平方根是0. 例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a=0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时3 平方根【教学目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.3. 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.【新课导入】问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,即若x 2=a ,则x 为a 的平方根,记为x=±a .【教学过程】把求一个数a 的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1 求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)484就是求484的算术平方根;(2)是求4112的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】提醒学生注意分清每个算式的符号(包括性质符号).例3 求下列各式的值.分析:先要弄清每个符号表示的意义,并注意运算顺序.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方2(a>0)来解.法来解,熟练后直接根据aa例4 求下列各式中的x.(1)x2-361=0;(2)(x+1)2=289;(3)9(3x+2)2-64=0.分析:表面上本题是求方程的解,但实质上可理解为求平方根,用开平方求出x值;(2)中(x+1)、(3)中(3x+2)看作一个整体,求出它们后,再求x.例5 某建筑工地,用一根钢筋围成一个面积是25m2的正方形后还剩下7m,你能求出这根钢筋的长度吗?分析:先求出面积是25m2的正方形需用的钢筋长度,然后再求出这根钢筋的总长度.解:正方形的边长为5m,钢筋的长度为27m.【教学说明】在实际问题中要注意正方形的面积与边长的关系即一个正数与它的算术平方根的关系.【例题展示】【教学说明】学生自主完成,教师巡视,然后集体订正.【课堂小结】根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?2.正数,0,负数的平方根有什么规律?3.怎样求出一个数的平方根?数a的平方根怎样表示?【课后作业】从教材“习题6.1”中选取.6.2 立方根【教学目标】1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.【新课导入】问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a . 根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-. 【教学过程】例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6.【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x 的三次方程,两边同时开立方是解题的基本思路.例 4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm 3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm 3的水的体积,是铁块的体积,也是高为0.62cm 烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.【例题展示】例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【课堂小结】按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.【课后作业】从教材“习题6.2”中选取.6.3 实数课时1 实数及其分类【教学目标】1. 了解无理数和实数的概念,会将实数按一定的标准进行分类.2. 知道实数与数轴上的点一一对应.3. 从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【新课导入】问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.【教学过程】例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.例2 将例1(2)中各数填入相应括号内.整数集合{ ……}正数集合{ ……}有理数集合{ ……}负数集合{ ……}无理数集合{ ……}由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,…等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.例4下列说法错误的是( ).A.16的平方根是±2B.2是无理数是有理数C.327D.22是分数 分析:16的平方根即4的平方根±2, 327-=-3是有理数,而22是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.【例题展示】例1.下列说法中正确的是( ) A.4是一个无理数 B.在1-x 中x≥1 C.8的立方根是±2D.若点P (2,a )和点Q (b,-3)关于y 轴对称,则a+b 的值是5 例2.下列各数中,不是无理数的是( )例3.下列各数中:其中无理数有 . 有理数有 . 例4.判断正误.(1)有理数包括整数、分数和零. (2)不带根号的数是有理数. (3)带根号的数是无理数. (4)无理数都是无限小数. (5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正. 【答案】1.B 2.D【课堂小结】通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.【课后作业】从教材“习题6.3”中选取.课时2 实数的运算【教学目标】1. 了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2. 学会比较两个实数的大小.3. 了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.【新课导入】同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a的相反数是-a(a表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0)教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.【教学过程】【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)乘法交换律:ab=ba. (4)乘法结合律:(ab)c=a(bc). (5)分配律:a(b+c)=ab+ac. 例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.【例题展示】例1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 例2.比较2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.【课堂小结】让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 【课后作业】从教材“习题6.3”中选取.。
人教版七年级下册数学第6章《实数》优秀教学案例(教案)
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”
新人教版七年级下册第六章《实数》全章教案(共8份)
(总第十三课时)6.1平方根(1)
教学过程设计
(总第十四课时)6.1平方根(2)
教学过程设计
问:拼成的这个面积为2dm的大正方形的边长应该是多
3136
56.
,
1.41421356
2.
应用规律
(总第十五课时)6.1平方根(3)
教学过程设计
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数A的平方根的运算,叫开平方,叫被开方数.。
问题(五)
(总第十六课时)6.2立方根(1)
教学过程设计
(总第十七课时)6.2立方根(2)
教学过程设计
(总第十八课时)6.3实数(1)
教学过程设计
探究实数与数轴上的点一一对应关系。
我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?
如图所示,直径为1个单位长度的圆从原点沿数轴向
总结: 1.事实上,当从有理数扩充到实数以后,
与数轴上的点就是一一对应的,即每一个实数都可以
怎样表示无理数
(总第十九课时)6.3实数(2)
教学过程设计
(总第二十课时)第六章小结与复习
教学过程设计。
最新版人教版七年级数学下册第六章实数 教案教学设计
第六章实数6.1 平方根 (1)课时1 算术平方根 (1)课时2 用计算器求一个正数的算术平方根 (5)课时3 平方根 (8)6.2 立方根 (12)6.3 实数 (16)课时1 实数及其分类 (16)课时2 实数的运算 (19)6.1 平方根课时1 算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时2 用计算器求一个正数的算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm 2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】 教师归纳出新定义:一般地,如果一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a”,a 叫作被开方数.规定:0的算术平方根是0. 例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a=0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时3 平方根【教学目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.3. 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.【新课导入】问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,即若x 2=a ,则x 为a 的平方根,记为x=±a .【教学过程】把求一个数a 的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1 求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)484就是求484的算术平方根;(2)是求4112的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】提醒学生注意分清每个算式的符号(包括性质符号).例3 求下列各式的值.分析:先要弄清每个符号表示的意义,并注意运算顺序.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方2(a>0)来解.法来解,熟练后直接根据aa例4 求下列各式中的x.(1)x2-361=0;(2)(x+1)2=289;(3)9(3x+2)2-64=0.分析:表面上本题是求方程的解,但实质上可理解为求平方根,用开平方求出x值;(2)中(x+1)、(3)中(3x+2)看作一个整体,求出它们后,再求x.例5 某建筑工地,用一根钢筋围成一个面积是25m2的正方形后还剩下7m,你能求出这根钢筋的长度吗?分析:先求出面积是25m2的正方形需用的钢筋长度,然后再求出这根钢筋的总长度.解:正方形的边长为5m,钢筋的长度为27m.【教学说明】在实际问题中要注意正方形的面积与边长的关系即一个正数与它的算术平方根的关系.【例题展示】【教学说明】学生自主完成,教师巡视,然后集体订正.【课堂小结】根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?2.正数,0,负数的平方根有什么规律?3.怎样求出一个数的平方根?数a的平方根怎样表示?【课后作业】从教材“习题6.1”中选取.6.2 立方根【教学目标】1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.【新课导入】问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a . 根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-. 【教学过程】例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6.【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x 的三次方程,两边同时开立方是解题的基本思路.例 4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm 3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm 3的水的体积,是铁块的体积,也是高为0.62cm 烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.【例题展示】例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【课堂小结】按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.【课后作业】从教材“习题6.2”中选取.6.3 实数课时1 实数及其分类【教学目标】1. 了解无理数和实数的概念,会将实数按一定的标准进行分类.2. 知道实数与数轴上的点一一对应.3. 从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【新课导入】问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.【教学过程】例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.例2 将例1(2)中各数填入相应括号内.整数集合{ ……}正数集合{ ……}有理数集合{ ……}负数集合{ ……}无理数集合{ ……}由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,…等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.例4下列说法错误的是( ).A.16的平方根是±2B.2是无理数是有理数C.327D.22是分数 分析:16的平方根即4的平方根±2, 327-=-3是有理数,而22是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.【例题展示】例1.下列说法中正确的是( ) A.4是一个无理数 B.在1-x 中x≥1 C.8的立方根是±2D.若点P (2,a )和点Q (b,-3)关于y 轴对称,则a+b 的值是5 例2.下列各数中,不是无理数的是( )例3.下列各数中:其中无理数有 . 有理数有 . 例4.判断正误.(1)有理数包括整数、分数和零. (2)不带根号的数是有理数. (3)带根号的数是无理数. (4)无理数都是无限小数. (5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正. 【答案】1.B 2.D【课堂小结】通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.【课后作业】从教材“习题6.3”中选取.课时2 实数的运算【教学目标】1. 了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2. 学会比较两个实数的大小.3. 了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.【新课导入】同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a的相反数是-a(a表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0)教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.【教学过程】【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)乘法交换律:ab=ba. (4)乘法结合律:(ab)c=a(bc). (5)分配律:a(b+c)=ab+ac. 例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.【例题展示】例1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 例2.比较2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.【课堂小结】让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 【课后作业】从教材“习题6.3”中选取.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教具准备:三块大小相等的正方形纸片;学生计算器。
教学方法:自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1. 探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、—,那么正方形的边长分别是多25少呢?学生会求出边长分别是1、3、4、6、2,接下来教师可以引导性地提问:5上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不 出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2. 归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算 术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为、a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:497⑴100 ⑵4-⑶17⑷0.0001 ⑸0649解:⑴因为102100,所以100的算术平方根是10,即• 10010 ;⑵因为(7)249,所以49的算术平方根是-,即..49-;8 6464 8 V 64 8⑶因为1,() ,所以1—的算术平方根是一,即:1 99 3 9 93 V 9 V 9 3⑷因为0.012 0.0001,所以0.0001的算术平方根是0.01,即•. 0.00010.01 ;⑸因为020,所以0的算术平方根是0 ,即0 0。
注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;② 求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求 解; ③ 0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出一1, - 36, - 100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术 平方根。
即:只有非负数有算术平方根,如果 X ... a 有意义,那么a 0,x0。
注:a 0且a 0这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、 求下列各式的值:分析:此题本质还是求几个非负数的算术平方根。
(3) ( 11)2 . 112 11 (4) , 62 6例3、 求下列各数的算术平方根:1⑴32⑵43⑶(10)2⑷r106解:(1)因为32 9,所以..32 9 3 ; ⑵因为43 64 82,所以.43 6 4 8 ;⑶因为(10)2 100 102,所以,(10)2.100 10 ;根据学生的学习能力和理解能力可进行如下总结:1、 由、32 3, 、62 6,可得.a 2 a(a 0)2、 由■ ( 11)211, . ( 10)210,可得、a 2教师需强调a 0时对两种情况都成立。
四、随堂练习:1、 算术平方根等于本身的数有 _____________2、 求下列各式的值:1, ,25,52,"(3) ( 11)2 (4) 62⑷因为a(a 0)(1)4 ( 2)解:( 1)427 913、求下列各数的算术平方根:2 1 2 90.0025, 121, 42, ( -)2, 1 —2 164、已知1 ,b 1 0,求a 2b的值。
五、课堂小结1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?六、布置作业课本第75页习题13.1第1、2题教学反思本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数 (无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略•能使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.6.1.2平方根第2课时【教学目标】知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。
过程与方法:通过折纸认识第一个无理数' 2,并通过估计它的大小认识无限不循环小数的特点。
用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。
情感态度与价值观:通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。
教学重点:①认识无限不循环小数的特点,会估算一些数的算术平方根。
②会用算术平方根的知识解决实际问题。
教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根。
教学方法:自主探究、启发引导、小组合作教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。
你知道这个大正方形的边长是多少吗?设大正方形的边长为X,则x22,由算术平方根的意义可知x 、2,所以大正方形的边长为2。
二、讨论.2的大小:由上面的实验我们认识了.2,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论2的大小。
因为121,224, 12v 2 V 22,所以1 V 2 V 2.因为1.42 1.96 , 1.52 2.25,所以1.4 <72 V 1.5。
因为1.412 1.9881 , 1.422 2.0164,所以1.41V . 2 V 1.42因为1.4142 1.999396 , 1.4152 2.002225,所以1.414 V . 2 V 1.415如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。
■. 2 =1.41421356……注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。
2 =1.41421356……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率n也是一个无限不循环小数。
三、用计算器求算术平方根:大多数计算器都有“ 「”键,用它可以求出一个有理数的算术平方根或近似值。
例1、用计算器求下列各式的值:(1) 336 ; (2)、. 2 (精确到0.001)t /—i ---------解:(1)依次按键;3136,显示:56.所以•. 3136 56(2)依次按键厂2=,显示:1.414213562,这是一个近似值。
所以2 1.414.注:不同品牌的计算器,按键的顺序可能有所不同。
四、探索规律:用计算器计算(结果保留个有效数字),并利用你发现的规律写出0.03,: 300 ,v’30000的近似值。
你能根据3的值求出30的值吗?学生通过计算器可求出(1)的答案,依次是:0.25,0.791,2.5,7.91,25,79.1,250从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。
由1.732 可得. 0.03 0.1732,、.300 17.32,、30000 173.2,由..3 的值不能求出,30的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出。
此题学生可独立完成。
五、实际应用:例1、小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长与宽之比为3 : 2,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。
”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗?分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。
通过计算和讲解纠正这种错误的认识。
解:设长方形纸片的长为3xcm,宽为2xcm。
根据边长与面积的关系可得:3x 2x 300,6x2 300,x2 50,x . 50•••长方形纸片的长为3,50cm。
因为50 > 49,所以.50 > 7,从而3 50 > 21即长方形纸片的长应该大于21cm,而已知正方形纸片的边长只有20cm,这样长方形纸片的长将大于正方形纸片的边长。
答:不能同意小明的说法。
小丽不能用这块正方形纸片裁出符合要求的长方形纸片。
六、随堂练习:1. 用计算器求下列各式的值:(1) . 1369 (2) 、101.2036 (3) 5 (精确到0.01 )2、估计大小:(1) .140 与12 (2) 与0.523、已知.2 1.414,求..0.02 , ..0.0002 ,: 200 , .一20000 的值。
七、课堂小结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的数是无限不循环小数?八、布置作业课本第75页习题13.1第3、5题教学反思:本节课首先提出“ ._ 2有多大”的问题,这是一个学生关注的具有挑战性的问题,也是说明引入算术平方根必要性的好问题(如果算术平方根都可以像完全平方数的算术平方根那样求得,恐怕就没有必要花那么多的精力来学习算术平方根了),所以教学中要引起重视•解决这个问题的过程体现了“数学中的无限逼近的思想”并使学生体验“无限不循环”小数的特点(学生对无限的体会没有障碍,但对不循环会因计算实际的局限无法体会,是本节课的一个疑点,教师可适当说明,不要深究).6.1.3平方根第三课时【教学目标】知识与技能了解平方根的概念,会用根号表示正数的平方根;了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根过程与方法通过学习平方根,进一步建立数感和符号感,发展抽象思维。