一元二次方程,二次函数及圆知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程总复习
一:一元二次方程的概念
一元二次方程:只含有一个未知数,未知数的最高次数是2,且二次项系数不为 0,这样的方程叫一元二次方 程.
一般形式:ax 2+bx+c=0(a ≠0)。
a 是二次项系数,b 是一次项系数,c 是常数项。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式,再看最高次数是否为2,二次项系数是否为0.
二:一元二次方程的解法
1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±
b
∴1x =-a+b 2x =-a-b
2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:
①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.
3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a
ac b b x 242-±-=
(b 2
-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-
4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:
⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解. ⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2
=3(x +4)中,不能随便约去x +4。
⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.
三.一元二次方程解的情况
⑴b 2-4ac ≥0⇔方程有两个不相等的实数根; ⑵b 2-4ac=0⇔方程有两个相等的实数根; ⑶b 2-4ac ≤0⇔方程没有实数根。
解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b 2-4ac 解题。
主要用于求方程中未知系数的值或取值范围。
四:根与系数的关系:韦达定理
对于方程ax 2+bx+c=0(a ≠0)来说,x1 +x2 =—a b ,x1●x2= a c。
利用韦达定理可以求一些代数式的值(式子变形),如212
2122212)(x x x x x x -+=+,
2
121211
1x x x x x x +=+。
解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。
五:一元二次方程的应用
一、考点讲解:
1.构建一元二次方程数学模型,常见的模型如下:
⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等;
⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x )2=b ,其中a 表示增长(降低)前的数据,x 表示增长率(降低率),b 表示后来的数据。
注意:所得解中,增长率不为负,降低率不超过1。
⑶ 经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。
⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。
2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.
二次函数知识点总结及相关典型题目
1.定义:一般地,如果c b a c bx ax y ,,(2
++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数 c bx ax y ++=2
的图像是对称轴平行于(包括重合)y 轴的抛物线. 3.二次函数c bx ax y ++=2
用配方法可化成:()
k h x a y +-=2
的形式,其中a
b a
c k a b h 4422
-=-=,.
4.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2
;③()2
h x a y -=;④
()k h x a y +-=2
;⑤c bx ax y ++=2.
5.抛物线的三要素:开口方向、对称轴、顶点.
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;
a 相等,抛物线的开口大小、形状相同,a 越大开口越小,a 越小开口越大.
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .
6.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
7.求抛物线的顶点、对称轴的方法
(1)公式法:a b ac a b x a c bx ax y 44222
2
-+
⎪⎭⎫ ⎝
⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a
b
x 2-
=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2
的形式,得到顶点为(h ,k ),对称
轴是直线h x =.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物
线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 8.抛物线c bx ax y ++=2
中,c b a ,,的作用 (1)a 决定开口方向及开口大小.
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2
的对称轴是直线
a b x 2-
=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a
b (即a 、b 异号)时,对称轴在y 轴右侧.可以总结为“左同右异”。
(3)
c 的大小决定抛物线c bx ax y ++=2
与y 轴交点的位置.
当0=x 时,c y =,∴抛物线c bx ax y ++=2
与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a
b
. 9.用待定系数法求二次函数的解析式
(1)一般式:c bx ax y ++=2
.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 10.直线与抛物线的交点
(1)y 轴与抛物线c bx ax y ++=2
得交点为(0, c ).
(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2
有且只有一个交点(h ,c bh ah ++2
).
(3)抛物线与x 轴的交点
二次函数c bx ax y ++=2
的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程
02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点⇔0>∆⇔抛物线与x 轴相交;
②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,
则横坐标是k c bx ax =++2
的两个实数根.
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像G 的交点,由方程组
c
bx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一
组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2
与x 轴两交点为()()0021,,,x B x A ,由于1x 、
2x 是方程02=++c bx ax 的两个根,故
a
c
x x a b x x =
⋅-=+2121,()
()
a a ac
b a
c a b x x x x x x x x AB ∆=-=-⎪⎭
⎫ ⎝⎛-=--=
-=
-=44422
212
212
2121
《圆》章节知识点复习
一、
与圆有关的概念
1.圆:(1)动态概念:可以看做一条线段绕着其中一个端点旋转360度,另一个端点所形成的图像。
(2)静态概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫三角形的外接圆,其圆心叫做三角形的外心(三角形三边垂直平分线的交点)。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心(三角形三条角平分线的交点)。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
二、点与圆的位置关系(d表示圆心与点之间的距离)
1、点在圆内⇒d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
三、直线与圆的位置关系(d表示圆心到直线的距离)
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
四、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径②AB CD
⊥③CE DE
=④弧BC=弧BD⑤弧AC=弧AD
中任意2个条件推出其他3个结论。
五、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等。
六、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB
∠和ACB
∠是弧AB所对的圆心角和圆周角
∴2
AOB ACB
∠=∠
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等
弧;
A
B
B
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦
是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
七、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,
∵四边形ABCD 是内接四边形
∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠
八、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线
(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
九、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠
B
A
十、圆内正多边形的计算 (1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆
中进行:
::2OD BD OB =;
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆
中进行,::OE AE OA =
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆
中进行,::2AB OB OA =.
十一、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
; (2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
l
O。