2008年全国高考理科数学试题及答案-天津卷【整理版】
2008年高考全国卷2理科数学(含解析)
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。
数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且0b ≠,所以2232303a b b b a =⇒=-【高考考点】复数的基本概念、基本运算,立方和公式(基本运算)【评注】很多学生没有学习过立方和公式,不会用立方和公式一步到位地展开,有人按32()()()a bi a bi a bi +=++进行展开,也有人按3()()()()a bi a bi a bi a bi +=+++进行展开,还有人用二项式定理进行展开,这都是可行的思路。
(word完整版)2008年高考理科数学试题及答案(全国卷2),推荐文档
绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k本卷12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a =(3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x(4)若)1,(1-∈e x ,x ln =a ,x ln 2=b ,x 3ln =c ,则A .c b a << B. b a c << C. c a b << D. a c b <<(5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .299 B. 2910 C. 2919 D. 2920 (7)()()4611x x +-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为 A .1 B. 2 C.3 D.2(9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为 A .31 B. 32 C. 33 D. 32(11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3 B. 2 C. 31-D. 21- (12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。
2008天津高考数学理科试卷及答案
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D6.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( D )A .1()f x -在其定义域上是增函数且最大值为1B .1()f x -在其定义域上是减函数且最小值为0C .1()f x -在其定义域上是减函数且最大值为1D .1()f x -在其定义域上是增函数且最小值为0 8.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin 7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛- ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,,。
(38)2008年高考理科数学试题(天津卷)及参考答案
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件互斥,那么球的表面积公式球的体积公式 如果事件相互独立,那么 其中表示球的半径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.是虚数单位,( ) A .B .C .D .2.设变量满足约束条件则目标函数的最大值为( )A .2B .3C .4D .53.设函数,则是( ) A .最小正周期为的奇函数B .最小正周期为的偶函数C .最小正周期为的奇函数 D .最小正周期为的偶函数 4.设是两条直线,是两个平面,则的一个充分条件是( )A .B .C .D .5.设椭圆上一点到其左焦点的距离为3,到右焦点的距离为1,则到右准线的距离为( ) A .6B .2C .D6.设集合,,,则的取值范围是( )A .B .C .或D .或7.设函数的反函数为,则( )A .在其定义域上是增函数且最大值为1B .在其定义域上是减函数且最小值为0C .在其定义域上是减函数且最大值为1D .在其定义域上是增函数且最小值为08.已知函数则不等式的解集是()A .B .C .D .9.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则( )A .B .C .D .10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有()A B ,24πS R =()()()P A B P A P B +=+34π3V R =A B ,R ()()()P A B P A P B =i 3i (i 1)i 1+=-1-1i -i x y ,012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥5z x y =+()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,()f x πππ2π2a b ,αβ,a b ⊥a b αβαβ⊥⊥,∥,a b αβαβ⊥⊥,,∥a b αβαβ⊂⊥,,∥a b αβαβ⊂⊥,∥,22221(1)1x y m m m +=>-P P 12{}23S x x =->{}8T x a x a =<<+S T =R a 31a -<<-31a --≤≤3a -≤1a -≥3a <-1a >-()1)f x x =<≤1()f x -1()f x -1()f x -1()f x -1()fx -10()10x x f x x x -+<⎧=⎨-⎩,,,≥,(1)(1)1x x f x +++≤{}11x x -≤{}1x x ≤{}1x x {}11x x ≤()f x R [)0+,∞2sin7a f π⎛⎫= ⎪⎝⎭5cos 7b f π⎛⎫= ⎪⎝⎭5tan 7c f π⎛⎫= ⎪⎝⎭b a c <<c b a <<b c a <<a b c <<A .1344种B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.的二项展开式中的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 . 13.已知圆的圆心与抛物线的焦点关于直线对称,直线与圆相交于两点,且,则圆的方程为 .14.如图,在平行四边形中,,, 则 .15.已知数列中,,,则 . 16.设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值的集合为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知,. (Ⅰ)求的值; (Ⅱ)求的值. 18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥中,底面是矩形.已知,,,,.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小. 20.(本小题满分12分) 已知函数,其中. (Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.21.(本小题满分14分)已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是. (Ⅰ)求双曲线的方程;(Ⅱ)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐52x x ⎛⎫- ⎪⎝⎭2x 43πC 24y x =y x =4320x y --=C A B ,6AB =C ABCD (12)AC =,(32)BD =-,AD AC ={}n a 11a =111()3n n n a a n ++-=∈*N lim n n a →∞=1a >c []2x a a ∈,2y a a ⎡⎤∈⎣⎦,log log a a x y c +=a 2cos 410x π⎛⎫-= ⎪⎝⎭324x ππ⎛⎫∈ ⎪⎝⎭,sin x sin 23x π⎛⎫+⎪⎝⎭12p 116p ξξP ABCD -ABCD 3AB =2AD =2PA =22PD =60PAB =∠AD ⊥PAB PC AD P BD A --()(0)af x x b x x=++≠a b ∈R ,()y f x =(2(2))P f ,31y x =+()f x ()f x 122a ⎡⎤∈⎢⎥⎣⎦,()10f x ≤114⎡⎤⎢⎥⎣⎦,b C 1(30)F -,520x y -=C (0)k k ≠l C M N ,MN A BCDP BACD标轴围成的三角形的面积为,求的取值范围.22.(本小题满分14分)在数列与中,,,数列的前项和满足,为与的等比中项,.(Ⅰ)求,的值;(Ⅱ)求数列与的通项公式;(Ⅲ)设,证明.2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.A2.D3.B4.C5.B6.A7.D8.C9.A10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.11.4012.2413.14.315.16.三、解答题17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分.(Ⅰ)解法一:因为,所以,于是..,即.又,从而,解得或.因为,所以.(Ⅱ)解:因为,故.,.所以,.18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,解得或(舍去),所以乙投球的命中率为.(Ⅱ)解:由题设和(Ⅰ)知,,,.可能的取值为0,1,2,3,故812k{}na{}n b11a=14b={}n a n n S1(3)0n nnS n S+-+=12na+nb1nb+n∈*N2a2b{}na{}n b1212(1)(1)(1)n aa an nT b b b n=-+-++-∈*N…,223nT n n<,≥22(1)10x y+-=76{}2324xππ⎛⎫∈ ⎪⎝⎭,442xπππ⎛⎫-∈ ⎪⎝⎭,sin410xπ⎛⎫-==⎪⎝⎭sin sin sin cos cos sin444444x x x x⎛ππ⎫ππππ⎛⎫⎛⎫⎛⎫=-+=-+-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+=x x=1cos sin5x x+=22sin cos1x x+=225sin5sin120x x--=4sin5x=3sin5x=-324xππ⎛⎫∈ ⎪⎝⎭,4sin5x=324xππ⎛⎫∈ ⎪⎝⎭,3cos5x===-24sin22sin cos25x x x==-27cos22cos125x x=-=-sin2sin2cos cos2sin333x x xπππ⎛⎫+=+=⎪⎝⎭A B221(1())(1)16P B p-=-=34p=54p=341()2P A=1()2P A=3()4P B=1()4P B=ξ,, ,. 的分布列为的数学期望. 19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在中,由题设,,,可得,于是.在矩形中,,又,所以平面.(Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角. 在中,由余弦定理得 .由(Ⅰ)知平面,平面,所以,因而,于是是直角三角形, 故. 所以异面直线与所成的角的大小为.(Ⅲ)解:过点作于,过点作于,连结. 因为平面,平面,所以.又,因而平面,故为在平面内的射影.由三垂线定理可知,.从而是二面角的平面角.由题设可得,,,,,. 于是在中,. 所以二面角的大小为. 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. (Ⅱ)解:. 当时,显然,这时在,内是增函数. 当时,令,解得. 当变化时,,的变化情况如下表:2111(0)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭12(1)()()()()()P P A P B B C P B P B P A ξ==+211311722444232⎛⎫=⨯+⨯⨯⨯= ⎪⎝⎭2139(3)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==ξξ0123P 1327321532932ξ171590123232323232E ξ=⨯+⨯+⨯+⨯=PAD △2PA =2AD =22PD =222PA AD PD +=AD PA ⊥ABCD AD AB ⊥PA AB A =AD ⊥PAB BC AD ∥PCB ∠PC AD PAB △222cos 7PB PA AB PA AB PAB =+-=AD ⊥PAB PB ⊂PAB AD PB ⊥BC PB ⊥PBC △7tan 2PB PCB BC ==PC AD 7arctan 2P PH AB ⊥H H HE BD ⊥E PE AD ⊥PAB PH ⊂PAB AD PH ⊥ADAB A =PH ⊥ABCD HEPE ABCD BD PE ⊥PEH ∠P BD A --sin 603PH PA ==cos601AH PA ==2BH AB AH =-=2213BD AB AD =+=413AD HE BH BD ==Rt PHE △39tan 4PH PEH HE ==P BD A --39arctan42()1af x x'=-(2)3f '=8a =-(2(2))P f ,31y x =+27b -+=9b =()f x 8()9f x x x=-+2()1af x x'=-0a ≤()0(0)f x x '>≠()f x (0)-∞,(0)+,∞0a >()0f x '=x a =±x ()f x '()f x x ()a --∞,a -(0)a -,(0)a ,a ()a +,∞()f x '+0--0+AB CDPHE所以在,内是增函数,在,内是减函数. (Ⅲ)解:由(Ⅱ)知,在上的最大值为与中的较大者,对于任意的,不等式在上恒成立,当且仅当 即 对任意的成立. 从而得,所以满足条件的的取值范围是.21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线的方程为,由题设得解得 所以双曲线的方程为. (Ⅱ)解:设直线的方程为,点,的坐标满足方程组将①式代入②式,得,整理得 .此方程有两个不等实根,于是,且.整理得. ③由根与系数的关系可知线段的中点坐标满足,. 从而线段的垂直平分线的方程为.此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.将上式代入③式得, 整理得,.解得或. 所以的取值范围是. 22.本小题主要考查等差数列的概念、通项公式及前项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分.()f x (--∞,+∞((0()f x 114⎡⎤⎢⎥⎣⎦,14f ⎛⎫ ⎪⎝⎭(1)f 122a ⎡⎤∈⎢⎥⎣⎦,()10f x ≤114⎡⎤⎢⎥⎣⎦,1104(1)10f f ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩≤,≤,39449b a b a ⎧-⎪⎨⎪-⎩≤,≤122a ⎡⎤∈⎢⎥⎣⎦,74b ≤b 74⎛⎤- ⎥⎝⎦∞,C 22221(00)x y a b a b-=>>,229a b b a⎧+=⎪⎨=⎪⎩,2245.a b ⎧=⎪⎨=⎪⎩,C 22145x y -=l (0)y kx m k =+≠11()M x y ,22()N x y ,221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ②22()145x kx m +-=222(54)84200k x kmx m ----=2540k -≠222(8)4(54)(420)0km k m ∆=-+-+>22540m k +->MN 00()x y ,12024254x x km x k +==-002554my kx m k =+=-MN 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭x y 29054km k ⎛⎫⎪-⎝⎭,29054m k ⎛⎫ ⎪-⎝⎭,2219981254542km m k k =--222(54)k m k-=0k ≠222(54)540k k k-+->22(45)(45)0k k k --->0k ≠0k <<54k >k 5555004224⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞n(Ⅰ)解:由题设有,,解得.由题设又有,,解得. (Ⅱ)解法一:由题设,,,及,, 进一步可得,,,,猜想,,. 先证,. 当时,,等式成立.当时用数学归纳法证明如下: (1)当时,,等式成立. (2)假设当时等式成立,即,.由题设,, ① .②①的两边分别减去②的两边,整理得,从而.这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的成立. 综上所述,等式对任何的都成立. 再用数学归纳法证明,. (1)当时,,等式成立.(2)假设当时等式成立,即,那么. 这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的都成立.解法二:由题设, ①. ②①的两边分别减去②的两边,整理得,,所以,,……,.将以上各式左右两端分别相乘,得, 由(Ⅰ)并化简得,. 上式对,也成立.由题设有,所以,即,. 令,则,即.由得,.所以 .即 ,.12140a a a +-=11a =23a =22214a b b =14b =29b =1(3)0n n nS n S +-+=11a =14b =23a =29b =36a =316b =410a =425b =(1)2n n n a +=2(1)n b n =+n ∈*N (1)2n n n a +=n ∈*N 1n =11(11)2a ⨯+=2n ≥2n =22(21)2a ⨯+=n k =(1)2k k k a +=2k ≥1(3)k k kS k S +=+1(1)(2)k k k S k S --=+1(2)k k ka k a +=+[]1(1)(1)122(1)22k k k k k k k k a a k k +++++++===1n k =+(1)2n n n a +=2n ≥(1)2n n n a +=n ∈*N 2(1)n b n =+n ∈*N 1n =21(11)b =+n k =2(1)k b k =+[]22221124(1)(2)(1)1(1)k k k a k k b k b k ++++===+++1n k =+2(1)n b n =+n ∈*N 1(3)n n nS n S +=+1(1)(2)n n n S n S --=+1(2)n n na n a +=+2n ≥3224a a =4335a a =1(1)(1)n n n a n a --=+3n ≥2(1)!(1)!6n n n a a +-=2(1)(1)62n n n n n a a ++==3n ≥1n =22114n n n b b a ++=221(2)(1)n n b b n n +=++1221(1)(2)n n b b n n +=++n ∈*N 2(1)nn b x n =+11n n x x +=11n n x x +=11x =1n x =1n ≥21(1)nb n =+2(1)n b n =+1n ≥解法三:由题设有,,所以, ,……,.将以上各式左右两端分别相乘,得,化简得,.由(Ⅰ),上式对,也成立.所以,. 上式对也成立.以下同解法二,可得,.(Ⅲ)证明:.当,时,.注意到,故.当,时,.当,时,.当,时,.所以,从而时,有总之,当时有,即.选择填空解析2008年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分) 1.(5分)(2008•天津)i 是虚数单位,=( )A .﹣1B .1C .﹣iD .i1(3)n n nS n S +=+n ∈*N 214S S =3225S S =1(1)(2)n n n S n S --=+2n ≥112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+……1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯3n ≥1n =21(1)2n n n n n a S S -+=-=2n ≥1n =2(1)n b n =+1n ≥1212(1)(1)(1)n aa a n n Tb b b =-+-++-…(1)222223(1)(1)n n n +=--++-+…4n k =k ∈*N 222222222345(42)(41)(4)(41)n T k k k k =--++-----+++ (2)222(42)(41)(4)(41)324k k k k k ----+++=-(1)32(12)43242n k k T k k k +=⨯+++-=⨯-…224(44)4(4)343k k k k k n n =+-=+⨯=+41n k =-k ∈*N 22222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+=42n k =-k ∈*N 22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---43n k =-k ∈*N 222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--2234333424134n n n k n n n k T k n n k n n n k --=-⎧⎪---=-⎪=∈⎨=-⎪⎪+=⎩*N ,,,,,,, ,3n ≥22213259133312610141237113124812n n n n n T n n n n n n n⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩,,,,…,, ,,,…,, ,,,…,, ,,,….3n ≥22n T n<22n T n <【考点】复数代数形式的混合运算.【分析】复数的分子复杂,先化简,然后再化简整个复数,可得到结果.【解答】解:,故选A.【点评】本题考查复数的代数形式的运算,i的幂的运算,是基础题.2.(5分)(2008•天津)设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A.2B.3C.4D.5【考点】简单线性规划的应用.【专题】计算题.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=5x+y的最小值.【解答】解:满足约束条件的可行域如图,由图象可知:目标函数z=5x+y过点A(1,0)时z取得最大值,z max=5,故选D.【点评】在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.3.(5分)(2008•天津)设函数,则函数f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【考点】二倍角的余弦;三角函数的周期性及其求法;余弦函数的奇偶性.【分析】首先利用余弦的二倍角公式把原函数转化为y=Asinωx的形式,然后由y=Asinωx的性质得出相应的结论.【解答】解:f(x)==﹣=﹣sin2x所以T=π,且为奇函数.故选A.【点评】本题考查余弦的二倍角公式及函数y=Asinωx的性质.4.(5分)(2008•天津)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b⊥β,α⊥βB.a⊥α,b⊥β,α⊥βC.a⊂α,b⊥β,α⊥βD.a⊂α,b⊥β,α⊥β【考点】空间中直线与直线之间的位置关系;必要条件、充分条件与充要条件的判断.【分析】根据题意分别画出错误选项的反例图形即可.【解答】解:A、B、D的反例如图.故选C.【点评】本题考查线面垂直、平行的性质及面面垂直、平行的性质,同时考查充分条件的含义及空间想象能力.5.(5分)(2008•天津)设椭圆上一点P到其左焦点的距离为3,到右焦点的距离为1,则P点到右准线的距离为()A.6B.2C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆定义,求出m,利用第二定义求出到右准线的距离,注意右焦点右准线的对应关系.【解答】解:由椭圆第一定义知a=2,所以m2=4,椭圆方程为所以d=2,故选B【点评】本题考查了椭圆的第一定义以及第二定义的应用6.(5分)(2008•天津)设集合S={x||x﹣2|>3},T={x|a<x<a+8},S⊥T=R,则a的取值范围是()A.﹣3<a<﹣1B.﹣3≤a≤﹣1C.a≤﹣3或a≥﹣1D.a<﹣3或a>﹣1【考点】集合的包含关系判断及应用.【分析】根据题意,易得S={x|x<﹣1或x>5},又有S⊥T=R,可得不等式组,解可得答案.【解答】解:根据题意,S={x||x﹣2|>3}={x|x<﹣1或x>5},又有S⊥T=R,所以,故选A.【点评】本题考查集合间的相互包含关系及运算,应注意不等式的正确求解,并结合数轴判断集合间的关系.7.(5分)(2008•天津)设函数的反函数为f﹣1(x),则()A.f﹣1(x)在其定义域上是增函数且最大值为1B.f﹣1(x)在其定义域上是减函数且最小值为0C.f﹣1(x)在其定义域上是减函数且最大值为1D.f﹣1(x)在其定义域上是增函数且最小值为0【考点】反函数.【分析】根据本题所给出的选项,利用排除法比较方便,这样可以简化直接求解带来的繁琐.【解答】解:⊥为减函数,由复合函数单调性知f(x)为增函数,⊥f﹣1(x)单调递增,排除B、C;又f﹣1(x)的值域为f(x)的定义域,⊥f﹣1(x)最小值为0故选D【点评】本题很好的利用了排除法,显得小巧灵活,如果求出反函数再去研究,就会麻烦多了,可以比较一下感受感受,所以筛选法、排除法、验证法都是很好的解题方法,平时要用.8.(5分)(2008•天津)已知函数,则不等式x+(x+1)f(x+1)≤1的解集是()A.B.{x|x≤1}C.D.【考点】分段函数的解析式求法及其图象的作法.【分析】对f(x+1)中的x分两类,即当x+1<0,和x+1≥0时分别解不等式可得结果.【解答】解:依题意得所以故选:C.【点评】本题考查分断函数,不等式组的解法,分类讨论的数学思想,是基础题.9.(5分)(2008•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin),b=f(cos),c=f(tan),则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【考点】偶函数;不等式比较大小.【专题】压轴题.【分析】通过奇偶性将自变量调整到同一单调区间内,根据单调性比较a、b、c的大小.【解答】解:,因为,又由函数在区间[0,+∞)上是增函数,所以,所以b<a<c,故选A【点评】本题属于单调性与增减性的综合应用,解决此类题型要注意:(1)通过周期性、对称性、奇偶性等性质将自变量调整到同一单调区间内,再比较大小.(2)培养数形结合的思想方法.10.(5分)(2008•天津)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有()A.1344种B.1248种C.1056种D.960种【考点】排列、组合的实际应用.【专题】计算题;压轴题.【分析】根据题意,分2步进行,首先确定中间行的数字只能为1,4或2,3,然后确定其余4个数字的排法数,使用排除法,用总数减去不合题意的情况数,可得其情况数目,由乘法原理计算可得答案.【解答】解:根据题意,要求3行中仅有中间行的两张卡片上的数字之和为5,则中间行的数字只能为1,4或2,3,共有C21A22=4种排法,然后确定其余4个数字,其排法总数为A64=360,其中不合题意的有:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有A42=12种排法,所以此时余下的这4个数字共有360﹣4×12=312种方法;由乘法原理可知共有4×312=1248种不同的排法,故选B.【点评】本题考查排列、组合的综合应用,注意特殊方法的使用,如排除法.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2008•天津)的二项展开式中,x2的系数是40(用数字作答).【考点】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2求出x2的系数.【解答】解:,令所以r=2,所以x2的系数为(﹣2)2C52=40.故答案为40【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.12.(4分)(2008•天津)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为24.【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.【专题】计算题;综合题.【分析】由题意球的直径等于正方体的体对角线的长,求出球的半径,再求正方体的棱长,然后求正方体的表面积.【解答】解:设球的半径为R,由得,所以a=2,表面积为6a2=24.故答案为:24【点评】本题考查球的内接体,球的表面积,考查空间想象能力,计算能力,是基础题.13.(4分)(2008•天津)已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x﹣3y﹣2=0与圆C 相交于A 、B 两点,且|AB|=6,则圆C的方程为x2+(y ﹣1)2=10.【考点】抛物线的应用;圆的标准方程;直线和圆的方程的应用.【专题】计算题.【分析】先根据抛物线方程求得焦点坐标,进而求得圆心,进而求得圆心到直线4x﹣3y﹣2=0的距离,根据勾股定理求得圆的半径.则圆的方程可得.【解答】解:依题意可知抛物线的焦点为(1,0),⊥圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.所以圆心坐标为(0,1),⊥,圆C的方程为x2+(y﹣1)2=10故答案为x2+(y﹣1)2=10【点评】本题主要考查了抛物线的应用.涉及了圆的基本性质,对称性问题,点到直线的距离,数形结合思想等问题.14.(4分)(2008•天津)如图,在平行四边形ABCD中,,则=3.【考点】平面向量数量积的运算.【分析】选一对不共线的向量做基底,在平行四边形中一般选择以最左下角定点为起点的一对边做基底,把基底的坐标求出来,代入数量积的坐标公式进行运算,得到结果.【解答】解:令,,则⊥.故答案为:3【点评】用基底表示向量,然后进行运算,比较困难.要启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.15.(4分)(2008•天津)已知数列{a n}中,,则=.【考点】数列的求和;极限及其运算.【专题】计算题;压轴题.【分析】首先由求a n可以猜想到用错位相加法把中间项消去,即可得到a n的表达式,再求极限即可.【解答】解:因为所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为【点评】此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.16.(4分)(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为{2}.【考点】对数的运算性质;函数单调性的性质.【专题】计算题;压轴题.【分析】由log a x+log a y=c可以用x表达出y,转化为函数的值域问题求解.【解答】解:⊥log a x+log a y=c,⊥=c⊥xy=a c得,单调递减,所以当x∈[a,2a]时,所以,因为有且只有一个常数c符合题意,所以2+log a2=3,解得a=2,所以a的取值的集合为{2}.故答案为:{2}【点评】本题考查函数与方程思想,需要有较强的转化问题的能力.。
2008年全国高考理科数学试题及答案-全国卷
2008年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学(必修+选修Ⅱ)一、选择题 1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥ D .{}|01x x ≤≤解:C. 由()10,0,1,0;x x x x x -≥≥≥=得或2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解:A . 根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s vt at =-结合函数图像可知; 3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b c 解:A. 由()2AD AB AC AD -=- ,322AD AB AC c b =+=+ ,1233AD c b =+;4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-解:D .()()()22221210,1a i i a ai i a a i a +=+-=-+->=-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .23解:C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =()A .21x e-B .2xeC .21x e+ D .22x e+sA .sssB .C .D .解:B.由()()()()21212ln 1,1,y x x y x ef x ef x e --=⇒=-==;7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-解:D. 由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位解:A. 55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像.9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,, D .(10)(01)- ,, 解:D 由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 解:D .由题意知直线1x ya b+=与圆221x y +=22111a b+1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n 可得cos sin 1a b αα=+11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D.23解:B.由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB =,棱柱的高1A O ===(等于点1B 到底面ABC 的距离1BD ),故1AB 与底面ABC 所成角的正弦值为1111B D A O AB AB ==. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060, 长度均为a ,平面ABC的法向量为111133OA AA AB AC =-- ,11AB AB AA =+211112,3OA AB a OA AB ⋅=== 则1AB 与底面ABC 所成角的正弦值为11113OA AB AO AB ⋅=.12.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48解:B.分三类:种两种花有24A 种种法;种三种花有342A 种种法; 种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:9解:可行域如图, 2-z xy=的最大值对应直线2y x z =-截距的最小值. 所以在顶点(3,3)B -处取最大值max 23(3)9z =⨯--=14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .答案:2.解:由抛物线21y ax =-的焦点坐标为 1(0,1)4a -为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .答案:38解:设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 答案:16.解:设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --的平面角,cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=- ,11()()22AN EM AB AC AC AE ⋅=+⋅-= 12故EM AN ,所成角的余弦值16AN EM AN EM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,(,2222M N ---,则31131(,(,,,2222222AN EM AN EM AN EM ==-⋅=== 故EM AN ,所成角的余弦值16AN EM AN EM ⋅= .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan2A B ==时,tan()A B -的最大值为34.18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小. 解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,CDE AB∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CEAD ⊥,AD ∴⊥面CEG ,EGAD ∴⊥则CGE ∠即为所求二面角的平面角.AC CD CG AD == ,DG =,EG ==, CE =222cos 210CG GE CE CGE CG GE +-∠==- ,πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x 在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增(2)2313--,且23a >解得:2a ≥20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.解:(Ⅰ)分别用i A 、i B 表示依甲、乙方案需要化验i 次,则: 121411(),()5P A P A ==⨯=,34311()P A =⨯⨯=,44322()5P A =⨯⨯=。
……2008年普通高等学校招生全国统一考试理科数学试题及答案-全国卷1
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,, D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)CDE AB(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案一、选择题 1、C 2、A 3、A 4、D 5、C 6、B 7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD ,由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。
2008高考天津数学理科试卷含详细解答(全word版)
绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=() A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f (x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x 的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC ⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0。
2008年全国统一高考数学试卷(理科)(全国卷二)及答案
2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}2.(5分)设a,b∈R且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b23.(5分)函数f(x)=﹣x的图象关于()A.y轴对称B.直线y=﹣x对称 C.坐标原点对称D.直线y=x对称4.(5分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为()A.B.C.D.7.(5分)(1﹣)6(1+)4的展开式中x的系数是()A.﹣4 B.﹣3 C.3 D.48.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.29.(5分)设a>1,则双曲线的离心率e的取值范围是()A.B.C.(2,5) D.10.(5分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为()A.B.C.D.11.(5分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.12.(5分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.15.(5分)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.16.(5分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6小题,满分70分)17.(10分)在△ABC中,cosB=﹣,cosC=.(1)求sinA的值(2)设△ABC的面积S=,求BC的长.△ABC18.(12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12分)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1﹣DE﹣B的大小.20.(12分)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;(Ⅱ)若a n≥a n,n∈N*,求a的取值范围.+121.(12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求k的值;(Ⅱ)求四边形AEBF面积的最大值.22.(12分)设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅱ)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n ≤3},则M∩N=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选B.2.(5分)(2008•全国卷Ⅱ)设a,b∈R且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0即可.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以3a2b﹣b3=0⇒b2=3a2故选A.3.(5分)(2008•全国卷Ⅱ)函数f(x)=﹣x的图象关于()A.y轴对称B.直线y=﹣x对称 C.坐标原点对称D.直线y=x对称【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.4.(5分)(2008•全国卷Ⅱ)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【分析】根据函数的单调性,求a的范围,用比较法,比较a、b和a、c的大小.【解答】解:因为a=lnx在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选C5.(5分)(2008•全国卷Ⅱ)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.6.(5分)(2008•全国卷Ⅱ)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为()A.B.C.D.【分析】由题意知本题是一个古典概型,试验发生的所有事件从30名同学中任选3名参加体能测试共有C303种结果,而满足条件的事件是选到的3名同学中既有男同学又有女同学共有C201C102+C202C101种结果.代入公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验发生的所有事件从30名同学中任选3名参加体能测试共有C303种结果,满足条件的事件是选到的3名同学中既有男同学又有女同学共有C201C102+C202C101种结果,∴由古典概型公式得到,故选D.7.(5分)(2008•全国卷Ⅱ)(1﹣)6(1+)4的展开式中x的系数是()A.﹣4 B.﹣3 C.3 D.4【分析】展开式中x的系数由三部分和组成:的常数项与展开式的x的系数积;的展开式的x的系数与的常数项的积;的的系数与的的系数积.利用二项展开式的通项求得各项系数.【解答】解:的展开式的通项为∴展开式中常数项为C60,含x的项的系数为C62,含的项的系数为﹣C61的展开式的通项为∴的展开式中的x的系数为C42,常数项为C40,含的项的系数为C41故的展开式中x的系数是C60C42+C62C40﹣C61C41=6+15﹣24=﹣3故选项为B8.(5分)(2008•全国卷Ⅱ)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.2【分析】可令F(x)=|sinx﹣cosx|求其最大值即可.【解答】解:由题意知:f(x)=sinx、g(x)=cosx令F(x)=|sinx﹣cosx|=|sin(x﹣)|当x﹣=+kπ,x=+kπ,即当a=+kπ时,函数F(x)取到最大值故选B.9.(5分)(2008•全国卷Ⅱ)设a>1,则双曲线的离心率e的取值范围是()A.B.C.(2,5) D.【分析】根据题设条件可知:,然后由实数a 的取值范围可以求出离心率e的取值范围.【解答】解:,因为是减函数,所以当a>1时,所以2<e2<5,即,故选B.10.(5分)(2008•全国卷Ⅱ)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为()A.B.C.D.【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【解答】解:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,=,=(﹣1,﹣1,﹣)∴cos<>=故选C.11.(5分)(2008•全国卷Ⅱ)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项判定结果即可.【解答】解:l1:x+y﹣2=0,k1=﹣1,,设底边为l3:y=kx 由题意,l3到l1所成的角等于l2到l3所成的角于是有,解得k=3或k=﹣,因为原点在等腰三角形的底边上,所以k=3.k=,原点不在等腰三角形的底边上(舍去),故选A.12.(5分)(2008•全国卷Ⅱ)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅱ)设向量,若向量与向量共线,则λ=2.【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解.【解答】解:∵a=(1,2),b=(2,3),∴λa+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).∵向量λa+b与向量c=(﹣4,﹣7)共线,∴﹣7(λ+2)+4(2λ+3)=0,∴λ=2.故答案为214.(5分)(2008•全国卷Ⅱ)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=2.【分析】根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.【解答】解:∵y=e ax∴y′=ae ax∴曲线y=e ax在点(0,1)处的切线方程是y﹣1=a(x﹣0),即ax﹣y+1=0∵直线ax﹣y+1=0与直线x+2y+1=0垂直∴﹣a=﹣1,即a=2.故答案为:215.(5分)(2008•全国卷Ⅱ)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.【分析】先设点A,B的坐标,求出直线方程后与抛物线方程联立消去y得到关于x的一元二次方程,求出两根,再由抛物线的定义得到答案.【解答】解:设A(x1,y1)B(x2,y2)>x2)由,,(x∴由抛物线的定义知故答案为:16.(5分)(2008•全国卷Ⅱ)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;三、解答题(共6小题,满分70分)17.(10分)(2008•全国卷Ⅱ)在△ABC中,cosB=﹣,cosC=.(1)求sinA的值(2)设△ABC的面积S=,求BC的长.△ABC【分析】(Ⅰ)由cosB,cosC分别求得sinB和sinC,再通过sinA=sin(B+C),利用两角和公式,进而求得sinA.(Ⅱ)由三角形的面积公式及(1)中的sinA,求得AB•AC的值,再利用正弦定理求得AB,再利用正弦定理进而求得BC.【解答】解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由得,由(Ⅰ)知,故AB×AC=65,又,故,.所以.18.(12分)(2008•全国卷Ⅱ)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【分析】(1)由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,由题意知ξ服从二项分布一投保人在一年度内出险的对立事件是没有一个人出险.(2)写出本险种的收入和支出,表示出它的盈利期望,根据为保证盈利的期望不小于0,列出不等式,解出每位投保人应交纳的最低保费.【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,由题意知ξ~B(104,p).(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000a﹣(10000ξ+50000),盈利的期望为Eη=10000a﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15元.19.(12分)(2008•全国卷Ⅱ)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1﹣DE﹣B的大小.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C与平面BED内两条相交直线BD,EF都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG是二面角A1﹣DE﹣B的平面角,然后解三角形,求二面角A1﹣DE﹣B的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出平面DA1E和平面DEB的法向量,求二者的数量积可求二面角A1﹣DE﹣B的大小.【解答】解:解法一:依题设知AB=2,CE=1.(Ⅰ)连接AC交BD于点F,则BD⊥AC.由三垂线定理知,BD⊥A1C.(3分)在平面A1CA内,连接EF交A1C于点G,由于,故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,所以A1C⊥平面BED.(6分)(Ⅱ)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,故∠A1HG是二面角A1﹣DE﹣B的平面角.(8分),,.,.又,..所以二面角A1﹣DE﹣B的大小为.((12分))解法二:以D为坐标原点,射线DA为x轴的正半轴,建立如图所示直角坐标系D﹣xyz.依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).,.(3分)(Ⅰ)因为,,故A1C⊥BD,A1C⊥DE.又DB∩DE=D,所以A1C⊥平面DBE.(6分)(Ⅱ)设向量=(x,y,z)是平面DA1E的法向量,则,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9分)等于二面角A1﹣DE﹣B的平面角,所以二面角A1﹣DE﹣B的大小为.(12分)20.(12分)(2008•全国卷Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;(Ⅱ)若a n≥a n,n∈N*,求a的取值范围.+1=2S n+3n,由此可知S n+1﹣3n+1=2(S n﹣3n).所以b n=S n 【分析】(Ⅰ)依题意得S n+1﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅱ)由题设条件知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,a n=S n﹣S n﹣=,由此可以求得a的取值范围是[﹣9,+∞).1【解答】解:(Ⅰ)依题意,S n﹣S n=a n+1=S n+3n,即S n+1=2S n+3n,+1﹣3n+1=2S n+3n﹣3n+1=2(S n﹣3n).(4分)由此得S n+1因此,所求通项公式为b n=S n﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n=S n﹣S n﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣a n=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)21.(12分)(2008•全国卷Ⅱ)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求k的值;(Ⅱ)求四边形AEBF面积的最大值.【分析】(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D在AB上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E与F关于原点对称可知y2=﹣y1>0,故四边形AEBF的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2===,当x2=2y2时,上式取等号.所以S的最大值为.22.(12分)(2008•全国卷Ⅱ)设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)令g(x)=ax﹣f(x),根据导数研究单调性的方法,即转化成研究对任何x ≥0,都有g(x)≥0恒成立,再利用分类讨论的方法求出a的范围.【解答】解:(Ⅰ).(2分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g(x)=ax﹣f(x),则==.故当时,g'(x)≥0.又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0时,有.因此,a的取值范围是.(12分)。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=() A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f (x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x 的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC ⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB >0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。
2008年高考理科数学试题及答案(全国卷2)2008年高考理科数学试题及答案(全国卷2)
绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k本卷12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a = (3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x (4)若)1,(1-∈e x ,x ln =a ,x ln 2=b ,x 3ln =c ,则A .c b a << B. b a c << C. c a b << D. a c b <<(5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径概率为A .299 B. 2910 C. 2919 D. 2920 (7)()()4611x x +-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为 A .1 B. 2 C.3 D.2(9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为A .31 B. 32 C. 33 D. 32(11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31-D. 21- (12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。
数学试卷201908年普通高等国统一考试数学(天津卷·理科)(附答案,完全word版)
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥,B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D.76.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( )A .1()f x -在其定义域上是增函数且最大值为1 B .1()f x -在其定义域上是减函数且最小值为0 C .1()f x -在其定义域上是减函数且最大值为1 D .1()fx -在其定义域上是增函数且最小值为08.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛ ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,, 则AD AC = .15.已知数列{}n a 中,11a =,111()3n n n a a n ++-=∈*N ,则lim n n a →∞= . 16.设1a >,若仅有一个常数c 使得对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log a a x y c +=,这时a 的取值的集合为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知cos 410x π⎛⎫-= ⎪⎝⎭,324x ππ⎛⎫∈ ⎪⎝⎭,. (Ⅰ)求sin x 的值; (Ⅱ)求sin 23x π⎛⎫+ ⎪⎝⎭的值.18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,2PA =,PD =60PAB =∠.(Ⅰ)证明AD ⊥平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角P BD A --的大小. 20.(本小题满分12分) 已知函数()(0)af x x b x x=++≠,其中a b ∈R ,. (Ⅰ)若曲线()y f x =在点(2(2))P f ,处的切线方程为31y x =+,求函数()f x 的解析式; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)若对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,求b 的取值范围.21.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,20y -=. (Ⅰ)求双曲线C 的方程;(Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.A BCDP22.(本小题满分14分)在数列{}n a 与{}n b 中,11a =,14b =,数列{}n a 的前n 项和n S 满足1(3)0n n nS n S +-+=,12n a +为n b 与1n b +的等比中项,n ∈*N . (Ⅰ)求2a ,2b 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式;(Ⅲ)设1212(1)(1)(1)n aaan n T b b b n =-+-++-∈*N …,,证明223n T n n <,≥.2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.B 4.C 5.B 6.A 7.D 8.C 9.A 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.40 12.24 13.22(1)10x y +-=14.315.7616.{}2三、解答题17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. (Ⅰ)解法一:因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以442x πππ⎛⎫-∈ ⎪⎝⎭,,于是sin 410x π⎛⎫-==⎪⎝⎭. sin sin sin cos cos sin 444444x x x x ⎛ππ⎫ππππ⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+⨯=.解法二:由题设得2210x x +=,即1cos sin 5x x +=. 又22sin cos 1x x +=,从而225sin 5sin 120x x --=,解得4sin 5x =或3sin 5x =-. 因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以4sin 5x =.(Ⅱ)解:因为324x ππ⎛⎫∈ ⎪⎝⎭,,故3cos 5x ===-.24sin 22sin cos 25x x x ==-,27cos 22cos 125x x =-=-. 所以,sin 2sin 2cos cos 2sin 333x x x πππ⎛⎫+=+= ⎪⎝⎭.18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B , 由题意得221(1())(1)16P B p -=-=, 解得34p =或54p =(舍去),所以乙投球的命中率为34. (Ⅱ)解:由题设和(Ⅰ)知1()2P A =,1()2P A =,3()4P B =,1()4P B =.ξ可能的取值为0,1,2,3,故2111(0)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭,12(1)()()()()()P P A P B B C P B P B P A ξ==+211311722444232⎛⎫=⨯+⨯⨯⨯=⎪⎝⎭, 2139(3)()()2432P P A P B B ξ⎛⎫===⨯=⎪⎝⎭, 15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==. ξ的分布列为ξ的数学期望0123232323232E ξ=⨯+⨯+⨯+⨯=.19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在PAD △中,由题设2PA =,2AD =,PD =222PA AD PD +=,于是AD PA ⊥.在矩形ABCD 中,AD AB ⊥,又PAAB A =,所以AD ⊥平面PAB .(Ⅱ)解:由题设,BC AD ∥,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角. 在PAB △中,由余弦定理得 PB ==由(Ⅰ)知AD ⊥平面PAB ,PB ⊂平面PAB ,AB CDPHE所以AD PB ⊥,因而BC PB ⊥,于是PBC △是直角三角形,故tan 2PB PCB BC ==.所以异面直线PC 与AD 所成的角的大小为arctan2. (Ⅲ)解:过点P 作PH AB ⊥于H ,过点H 作HE BD ⊥于E ,连结PE .因为AD ⊥平面PAB ,PH ⊂平面PAB ,所以AD PH ⊥.又AD AB A =,因而PH ⊥平面ABCD ,故HE 为PE 在平面ABCD 内的射影.由三垂线定理可知,BD PE ⊥.从而PEH ∠是二面角P BD A --的平面角. 由题设可得,sin 603PH PA ==cos601AH PA ==,2BH AB AH =-=,BD =,13AD HE BH BD ==.于是在Rt PHE △中,tan 4PH PEH HE ==.所以二面角P BD A --的大小为 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:2()1af x x'=-,由导数的几何意义得(2)3f '=,于是8a =-. 由切点(2(2))P f ,在直线31y x =+上可得27b -+=,解得9b =. 所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x '=-. 当0a ≤时,显然()0(0)f x x '>≠,这时()f x 在(0)-∞,,(0)+,∞内是增函数.当0a >时,令()0f x '=,解得x = 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在-,+∞内是增函数,在(,(0内是减函数. (Ⅲ)解:由(Ⅱ)知,()f x 在114⎡⎤⎢⎥⎣⎦,上的最大值为14f ⎛⎫⎪⎝⎭与(1)f 中的较大者,对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,当且仅当1104(1)10f f ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩≤,≤, 即39449b a b a ⎧-⎪⎨⎪-⎩≤,≤ 对任意的122a ⎡⎤∈⎢⎥⎣⎦,成立. 从而得74b ≤,所以满足条件的b 的取值范围是74⎛⎤- ⎥⎝⎦∞,.21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线C 的方程为22221(00)x y a b a b-=>>,,由题设得2292a b b a⎧+=⎪⎨=⎪⎩, 解得2245.a b ⎧=⎪⎨=⎪⎩,所以双曲线C 的方程为22145x y -=. (Ⅱ)解:设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ② 将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=.此方程有两个不等实根,于是2540k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00()x y ,满足12024254x x km x k +==-,002554my kx m k=+=-. 从而线段MN 的垂直平分线的方程为 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭. 此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫⎪-⎝⎭,,29054m k ⎛⎫ ⎪-⎝⎭,.由题设可得 2219981254542km m k k =--.整理得222(54)k m k-=,0k ≠. 将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠.解得0k <<或54k >. 所以k 的取值范围是55550044⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞. 22.本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分.(Ⅰ)解:由题设有12140a a a +-=,11a =,解得23a =.由题设又有22214a b b =,14b =,解得29b =.(Ⅱ)解法一:由题设1(3)0n n nS n S +-+=,11a =,14b =,及23a =,29b =, 进一步可得36a =,316b =,410a =,425b =,猜想(1)2n n n a +=,2(1)n b n =+,n ∈*N . 先证(1)2n n n a +=,n ∈*N . 当1n =时,11(11)2a ⨯+=,等式成立.当2n ≥时用数学归纳法证明如下: (1)当2n =时,22(21)2a ⨯+=,等式成立. (2)假设当n k =时等式成立,即(1)2k k k a +=,2k ≥. 由题设,1(3)k k kS k S +=+, ①1(1)(2)k k k S k S --=+. ②①的两边分别减去②的两边,整理得1(2)k k ka k a +=+,从而 []1(1)(1)122(1)22k k k k k k k k a a k k +++++++===. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a +=对任何的2n ≥成立.综上所述,等式(1)2n n n a +=对任何的n ∈*N 都成立. 再用数学归纳法证明2(1)n b n =+,n ∈*N .(1)当1n =时,21(11)b =+,等式成立.(2)假设当n k =时等式成立,即2(1)k b k =+,那么[]22221124(1)(2)(1)1(1)k k k a k k b k b k ++++===+++. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式2(1)n b n =+对任何的n ∈*N都成立.解法二:由题设1(3)n n nS n S +=+, ①1(1)(2)n n n S n S --=+. ②①的两边分别减去②的两边,整理得1(2)n n na n a +=+,2n ≥,所以 3224a a =,4335a a =,……1(1)(1)n n n a n a --=+,3n ≥.将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 上式对1n =,2也成立. 由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即 1221(1)(2)n n b b n n +=++,n ∈*N . 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以 21(1)n b n =+.即 2(1)n b n =+,1n ≥.解法三:由题设有1(3)n n nS n S +=+,n ∈*N ,所以214S S =,3225S S =,……1(1)(2)n n n S n S --=+,2n ≥.将以上各式左右两端分别相乘,得112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+……,化简得1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯,3n ≥. 由(Ⅰ),上式对1n =,2也成立.所以1(1)2n n n n n a S S -+=-=,2n ≥. 上式对1n =也成立. 以下同解法二,可得2(1)n b n =+,1n ≥.(Ⅲ)证明:1212(1)(1)(1)n aa a n n Tb b b =-+-++-… (1)222223(1)(1)n n n +=--++-+…. 当4n k =,k ∈*N 时,222222222345(42)(41)(4)(41)n T k k k k =--++-----+++…. 注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故 (1)32(12)43242n k k T k k k +=⨯+++-=⨯-… 224(44)4(4)343k k k k k n n =+-=+⨯=+.当41n k =-,k ∈*N 时, 22222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+=. 当42n k =-,k ∈*N 时, 22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---. 当43n k =-,k ∈*N 时, 222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--. 所以,2234333424134n n n k n n n k T k n n k n n n k --=-⎧⎪---=-⎪=∈⎨=-⎪⎪+=⎩*N ,,, ,,,, , 从而3n ≥时,有22213259133312610141237113124812n n n n n T n n n n n n n⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩,,,,…,, ,,,…,, ,,,…,, ,,,…. 总之,当3n ≥时有22n T n<,即22n T n <.。
2008高考全国卷Ⅰ数学理科试题含详细解答(全word版)080721
2008年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学(必修+选修Ⅱ)一、选择题 1.函数y =)A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤解:C. 由()10,0,1,0;x x x x x -≥≥≥=得或2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解:A . 根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s vt at =-结合函数图像可知;3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c解:A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4.设a ∈R ,且2()a i i +为正实数,则a =( )A .2B .1C .0D .1-解:D .()()()22221210,1a i i a ai i a a i a +=+-=-+->=-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .23解:C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( )A .21x e- B .2xeC .21x e+ D .22x e+sA .sssB .C .D .解:B.由()()()()21212ln 1,1,y x xy x ef x ef x e--=⇒=-==;7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2- 解:D. 由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位解:A. 55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,, 解:D 由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或. 10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥解:D .由题意知直线1x y ab+=与圆221x y +=221111ab+1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C3D .23解:B .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13A O a ===(等于点1B 到底面ABC 的距离1BD ),故1A B 与底面ABC所成角的正弦值为11113B D A O AB AB ==.另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060, 长度均为a ,平面ABC 的法向量为111133O A A A A B A C =-- ,11AB AB AA =+211112,33O A AB a O A AB ⋅===则1A B 与底面ABC所成角的正弦值为11113O A AB A O AB ⋅=. 12.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48解:B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:9解:可行域如图, 2-z x y =的最大值对应直线2y x z =-截距的最小值. 所以在顶点(3,3)B -处取最大值m ax 23(3)9z =⨯--=14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .答案:2.解:由抛物线21y ax =-的焦点坐标为 1(0,1)4a-为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .答案:38解:设1A B B C ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53A C =,582321,21,3328c a c e a=+====.16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 答案:16.解:设2A B =,作CO ABDE ⊥面,O H A B ⊥,则C H A B ⊥,C H O ∠为二面角C A BD --的平面角,cos 1C H O H C H C H O ==⋅∠=,结合等边三角形ABC与正方形A B D E 可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-= 12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,(,,,2222222AN EM AN EM AN EM ==-⋅===故E M A N ,所成角的余弦值16A N E M A N E M⋅= .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A BB B B--===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.(本小题满分12分)四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45,求二面角C A D E --的大小.解:(1)取B C 中点F ,连接D F 交C E 于点O ,A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E ,DE AB∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥则C G E ∠即为所求二面角的平面角.3AC C D C G AD== ,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎪⎝⎭,即二面角C A D E --的大小πarccos 10⎛⎫-⎪ ⎪⎝⎭.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x 在3a ⎛---∞ ⎪⎝⎭,递增,33a a ⎛⎫---+⎪ ⎪⎝⎭,递减, 3a ⎛⎫-++∞⎪ ⎪⎝⎭递增(2)233133-⎪-⎩,且23a >解得:2a ≥20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.解:(Ⅰ)分别用i A 、i B 表示依甲、乙方案需要化验i 次,则: 121411(),()5P A P A ==⨯=,34311()P A =⨯⨯=,44322()5P A =⨯⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i(2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5 (3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 (4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 (A) 6 (B) 2 (C)21 (D) 772 (6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f 1-在其定义域上是减函数且最小值为0 (C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0(8)已知函数()⎩⎨⎧≥-<+-=011x x x x x f ,则不等式()()111≤+++x f x x 的解集是 (A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x(9)已知函数()x f 是定义在R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,则 (A) c a b << (B) a b c << (C) a c b << (D) c b a <<(10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有 (A) 1344种 (B) 1248种 (C) 1056种 (D) 960种第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2.用钢笔或圆珠笔直接答在试卷上3.本卷共12小题,共100分。
二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中横线上.)(11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中2x 的系数是 (用数字作答).(12)一个正方体的各顶点均在同一球的球面上,若该球的体积为π34,则该正方体的表面积为 .(13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称,直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .(14)如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC ,则=⋅ .(15)已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→n n a lim .(16)设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有],[2a a y ∈满足方程c y x a a =+log log ,这时,a 的取值的集合为 .三、解答题(本题共6道大题,满分76分) (17)(本小题满分12分) 已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值.(18)(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.(19)(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.(20)(本小题满分12分) 已知函数()()0≠++=x b xax x f ,其中R b a ∈,. (Ⅰ)若曲线()x f y =在点()()2,2f P 处的切线方程为13+=x y ,求函数()x f 的解析式; (Ⅱ)讨论函数()x f 的单调性;(Ⅲ)若对于任意的⎥⎦⎤⎢⎣⎡∈2,21a ,不等式()10≤x f 在⎥⎦⎤⎢⎣⎡1,41上恒成立,求b 的取值范围.(21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x . (Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.(22)(本小题满分14分)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS , 12+n a 为n b 与1+n b 的等比中项,*N n ∈.(Ⅰ)求22,b a 的值;(II )求数列{a n }与{b n }的通项公式; (III )设T n =(-1)1a b 1+(-1)2a b 2+……+(-1)na b n ,n *∈N 证明|T n |<2n 2, n ≥3参考答案一、选择题:(1) A(2) D (3) B (4) C (5) B (6) A (7) D (8) C (9) A (10) B二、填空题: (11) 40 (12) 24(13) x 2+(y-1)2=10(14) 3(15)67(16) {2} 三、解答题: (17)解:(Ⅰ)解法一:因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x 54221022210274sin 4cos 4cos 4sin 44sin sin =⨯+⨯=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=ππππππx x x x解法二:由题设得102sin 22cos 22=+x x ,即51sin cos =+x x 又sin 2x+cos 2x=1,从而25sin 2x-5sinx-12=0,解得sinx=54或sinx=53- 因为⎪⎭⎫⎝⎛∈43,2ππx ,所以54sin =x (Ⅱ)解:因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x (18) 解:(Ⅰ)设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B 由题意得()()()1611122=-=-p B P 解得43=p 或45(舍去),所以乙投球的命中率为43(Ⅱ)由题设和(Ⅰ)知()()()()41,43,21,21====B P B P A P A Pξ可能的取值为0,1,2,3,故()()()321412102=⎪⎭⎫ ⎝⎛⨯=⋅==B B P A P P ξ()()()()()()327214143241211212=⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯=+⋅==AP B P B P C B B P A P P ξ()()()329432132=⎪⎭⎫ ⎝⎛⨯=⋅==B B P A P P ξ()()()()321531012==-=-=-==ξξξξP P P P ξ的分布列为ξ的数学期望2323322321320=⨯+⨯+⨯+⨯=ξE(19)解:(Ⅰ)证明:在PAD ∆中,由题设22,2==PD PA ,AD=2可得222PD AD PA =+,于是PAAD ⊥。
在矩形ABCD 中,AB AD ⊥.又A AB PA = ,所以⊥AD 平面PAB .(Ⅱ)解:由题设,AD BC //,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角. 在PAB ∆中,由余弦定理得由(Ⅰ)知⊥AD 平面PAB ,⊂PB 平面PAB , 所以PB AD ⊥,因而PB BC ⊥,于是PBC ∆是直角三角形,7cos 222=⋅⋅-+=PAB AB PA AB PA PB故27tan ==BC PB PCB 所以异面直线PC 与AD 所成的角的大小为27arctan. (Ⅲ)解:过点P 做AB PH ⊥于H ,过点H 做BD HE ⊥于E ,连结PE因为⊥AD 平面PAB ,⊂PH 平面PAB ,所以PH AD ⊥.又A AB AD = , 因而⊥PH 平面ABCD ,故HE 为PE 在平面ABCD 内的射影.由三垂线定理可知, PE BD ⊥,从而PEH ∠是二面角A BD P --的平面角。
由题设可得,134,13,2,160cos ,360sin 22=⋅==+==-==⋅==⋅=BH BD AD HE AD AB BD AH AB BH PA AH PA PH于是在PHE Rt ∆中,439tan ==HE PH PEH 所以二面角A BD P --的大小为439arctan. (20)本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:2()1af x x '=-,由导数的几何意义得(2)3f '=,于是8a =-. 由切点(2,(2))P f 在直线31y x =+上可得27b -+=,解得9b =. 所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x'=-. 当0a ≤时,显然()0f x '>(0x ≠).这时()f x 在(,0)-∞,(0,)+∞内是增函数. 当0a >时,令()0f x '=,解得x = 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x在(,-∞,)+∞内是增函数,在(,(0,a )内是减函数.(Ⅲ)解:由(Ⅱ)知,()f x 在1[,1]4上的最大值为1()4f 与(1)f 中的较大者,对于任意的1[,2]2a ∈,不等式0(1)f x ≤在1[,1]4上恒成立,当且仅当10(11(4)10)f f ≤≤⎧⎪⎨⎪⎩,即39449a b ab ≤-≤-⎧⎪⎨⎪⎩,对任意的1[,2]2a ∈成立. 从而得74b ≤,所以满足条件的b 的取值范围是(7,]4-∞.(21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.(Ⅰ)解:设双曲线C 的方程为22221x y a b -=(0,0a b >>).由题设得229a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线C 的方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx m x y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=. 此方程有两个不等实根,于是2504k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得 22540m k +->. ③ 由根与系数的关系可知线段MN 的中点坐标00(,)x y 满足12024254x x km x k +==-,002554my kx m k =+=-. 从而线段MN 的垂直平分线的方程为22514()5454m kmy x k k k-=----.此直线与x 轴,y 轴的交点坐标分别为29(,0)54km k -,29(0,)54mk -.由题设可得2219981||||254542km m k k ⋅=--.整理得222(54)||k m k -=,0k ≠. 将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠.解得0||2k <<或5||4k >.所以k 的取值范围是55,)((,)44(∞+--∞ . (22)本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分(Ⅰ)解:由题设有12140a a a +-=,11a =,解得23a =.由题设又有12224b b a =,14b =,解得29b =.(Ⅱ)解法一:由题设1(3)0n n nS n S +-+=,11a =,14b =,及23a =,29b =,进一步可得36a =,316b =,410a =,425b =,猜想(1)2n n n a +=,2(1)n b n =+,*n N ∈. 先证(1)2n n n a +=,*n N ∈. 当1n =时,1(1112)a ⨯=+,等式成立.当2n ≥时用数学归纳法证明如下:(1)当2n =时,2(2212)a ⨯=+,等式成立.(2)假设n k =时等式成立,即(1)2k k k a +=,2k ≥.由题设,1(3)k k kS k S +=+ 1(1)(2)k k k S k S --=+①的两边分别减去②的两边,整理得1(2)k k ka k a +=+,从而122(1)(1)[(1)1]22k k k k k k k k a a k k +++++++==⋅=. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a +=对任何的2n ≥成立.综上所述,等式(1)2n n n a +=对任何的*n N ∈都成立 再用数学归纳法证明2(1)n b n =+,*n N ∈. (1)当1n =时,21(11)b =+,等式成立.(2)假设当n k =时等式成立,即2(1)k b k =+,那么22221124(1)(2)[(1)1](1)k k k a k k b k b k ++++===+++. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式2(1)n b n =+对任何的*n N ∈都成立.解法二:由题设1(3)n n nS n S +=+ ① 1(1)(2)n n n S n S --=+ ②①的两边分别减去②的两边,整理得1(2)n n na n a +=+,2n ≥.所以 3224a a =, 4335a a =, ……1(1)(1)n n n a n a --=+,3n ≥. 将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 上式对1,2n =也成立.由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n nx x +=.由11x =得1n x =,1n ≥.所以21(1)n b n =+,即2(1)n b n =+,1n ≥.解法三:由题设有1(3)n n nS n S +=+,*n N ∈,所以214S S =,3225S S =,……1(1)(2)n n n S n S --=+,2n ≥. 将以上各式左右两端分别相乘,得12(1)145(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+ ,化简得 13(1)(2)(1)(2)26n n n n n n n S a ++==⨯++,3n ≥. 由(Ⅰ),上式对1,2n =也成立.所以1(1)2n n n n n a S S -+=-=,2n ≥. 上式对1n =时也成立.以下同解法二,可得2(1)n b n =+,1n ≥. (Ⅲ)证明:12(1)222122(1(1)23(1)(1))(1)n a a n n n a n b T b n b ++=-+-+-=--++-+ .当4n k =,*k N ∈时, 22222222(42)2(41)(3454)(41)n k k k k T ----=--+++++- . 注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故 (1)(12)4324322n T k k k k k +⨯+++-=⨯-= 224(44)4(4)343k k k k k n n ⨯==-++=+.当41n k =-,*k N ∈时,22224(41)(1)3(1)(2(4))3n k k k n n n T n =⨯-+=+++-+=+ 当42n k =-,*k N ∈时, 222224(41)(4)(43(2)()3)333n k k k n n n k n T ⨯-+-=+=-=-+--+. 当43n k =-,*k N ∈时, 22224(41)(41)3(3)(4)(23)3n k k n n T k n n ⨯-++-=+-+++=--=.所以22*3,4333,42,,413,4n n n k n n n k T k n n k n n n N k--=-⎧⎪---=-⎪=⎨=-⎪⎪+=∈⎩.从而3n ≥时,有222132,5,9,13,3312,6,10,14,||12,3,7,11,312,4,8,12,n n n n n T n n n n n n n ⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩ 总之,当3n ≥时有2||2n T n <,即2||2n T n <.。