2018年高考真题理科数学全国卷3试题+答案
2018年高考理科数学全国三卷试题和答案解析
2018年高考理科数学全国三卷试题和答案解析2018年高考理科全国三卷1.已知集合 $A=\{1,2,3,4\}。
B=\{2,3,4\}。
C=\{3,4\}。
D=\{4\}$,则 $(A\cup B)\cap (C\cup D)$ 的元素为 $\{3,4\}$。
2.设 $f(x)=\dfrac{1-x}{1+x}$,则 $f(f(x))=\dfrac{x-1}{x+1}$。
3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是选项 B。
4.若 $\log_2 a=3$,$\log_3 b=4$,$\log_5 c=5$,则$a^2bc=\dfrac{2^6\cdot 3^8\cdot 5^{10}}{15}$。
5.$x^6+(x+1)^6$ 的展开方式中 $x^2$ 的系数为 $40$。
6.直线 $y=x+1$,$y=-x+3$ 分别与 $x$ 轴,$y$ 轴交于两点,点在圆 $x^2+y^2=1$ 上,则面积 $S$ 的取值范围是$0<S<2\pi$。
7.函数 $f(x)=\sqrt{1-x^2}$,$g(x)=\dfrac{1}{2}$,则$h(x)=f(x)g(x)+\dfrac{1}{2}$ 的图像大致为一个半径为$\dfrac{1}{2}$,圆心在 $y$ 轴上方 $\dfrac{1}{2}$ 的圆。
8.某群体中的每位成员使用移动支付的概率为 $0.8$,各成员的支付方式相互独立。
设使用移动支付的人数为 $n$,则$P(n\leq 3)$ 的概率为 $0.008+0.096+0.345+0.409=0.858$。
9.已知 $\triangle ABC$ 中,$\angle A=120^\circ$,$AB=AC$,$BC=2$,则 $S_{\triangle ABC}=\sqrt{3}$,$\sinA=\dfrac{\sqrt{3}}{2}$,$\cos A=-\dfrac{1}{2}$。
2018年高考理科数学全国卷3(含答案与解析)
2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。
2018年高考全国卷3 理科数学试题与答案
2018年高考全国卷3 理科数学试题与答案2018年高考全国卷3理科数学试题与答案一、选择题1.已知集合A={x|x-1≥2},B={x|2<x≤3},则XXX的值为()A。
∅ B。
{1} C。
{1,2} D。
{2}改写:已知集合A={x|x≥3},B={x|2<x≤3},则B∩A={2}。
2.已知复数z1=1+i,z2=2-i,则(z1+z2)(z1-z2)的值为()A。
-3-i B。
-3+i C。
3-i D。
3+i改写:已知复数z1=1+i,z2=2-i,则(z1+z2)(z1-z2)=(1+i+2-i)(1+i-2+i)=(-3-i)。
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()删除:无法呈现图形改写:中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼。
如图所示,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是一个正方形或一个长方形。
4.若sinα=1/3,则cos2α的值为()A。
7/9 B。
-9/8 C。
-9/7 D。
9/7改写:若sinα=1/3,则cos2α=1-2sin^2α=8/9.5.(x^2+2/x)^5的展开式中x^4的系数为()A。
10 B。
20 C。
40 D。
80改写:(x^2+2/x)^5的展开式中x^4的系数为40.6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)^2+y^2=2上,则△ABP面积的取值范围是()A。
[2,8] B。
[4,32] C。
[2,3] D。
[2√2,3√2]改写:直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)^2+y^2=2上。
则△ABP面积的取值范围是[2,8]。
2018全国卷3高考试题及答案-理科数学.doc
绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年高考全国卷3理科数学试题和参考答案
2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B C D5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A. BC. DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12 B18 C24 D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析 >A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a= 。
(word完整版)2018年全国(三卷)高考数学(理)试题及答案,推荐文档
绝密★启用刖2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有项是符合题目要求的。
1.已知集合A x|x 1 > 0 , B0,1 ,2,则AI BA.0B. 1C. 1 , 2D. 0,1,2 2. 1i 2 iA. 3 i B. 3i3 i D. 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A14.若sin -,则cos2387C.A .- B.-99542DX 2.4, P X 4 P X 6,贝V pA . 0.7B . 0.6C . 0.4D . 0.3 9. △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若△ ABC 的面积为,V C7tC .22 45. x 2 -的展开式中x 4的系数为xA . 10B . 20C . 40D . 802勺6 .直线x y 20分别与x 轴,y 轴交于A , B 两点,点P 在圆x 2 y 2上,则△ ABP 面积的取值范围是A . 2,6B . 4, 8C . . 2,3.2D . 2「2,3.27.函数y x 4 x 22的图像大致为该群体的10位成员中使用移动支付的人数,10•设A, B , C , D是同一个半径为4的球的球面上四点,△ ABC为等边三角形且其面积为9 3,则三棱锥D ABC体积的最大值为A • 12 3 B• 18 3 C. 24 3 D• 54 32 2x y11 .设F i , F2是双曲线C:—2 —1 ( a 0 ,b 0 )的左,右焦点,O是坐标原点.过F2 a b作C的一条渐近线的垂线,垂足为P .若PF J丿6 OP,则C的离心率为A. 5B. 2C. 3D.、212.设a log 0.2 0.3 , b log 2 0.3,贝UA. a b ab 0B. ab a b 0C. a b 0 abD. ab 0 a b二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷3(理科数学)含答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则【C 】A .B .C .D . 2.【D 】 A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【A 】{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+4.若,则【B 】 A .B .C .D . 5.的展开式中的系数为【C 】A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是【A 】 A .B .C .D .7.函数的图像大致为【D 】1sin 3α=cos2α=897979-89-522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则【B 】 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则【C 】 A . B . C . D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为【B 】A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为【C 】 AB.2CD12.设,,则【B 】A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
完整版)2018年高考理科数学全国三卷试题及答案解析
完整版)2018年高考理科数学全国三卷试题及答案解析2018年高考理科全国三卷1.已知集合 A={1,2,3,4}。
B={2,3,4}。
C={3,4}。
D={4},则(A∩B)∪(C∩D) 的元素个数是多少?2.已知函数 f(x)=x^2-2x+1,g(x)=2x-1,则 f(g(x)) 的值为多少?3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼。
图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是哪一个?4.若 a,b,c 是正整数,且 a^2+b^2=c^2,则 a+b+c 的值是多少?5.将 (2x-y+3z)^4 展开后,x^2y^2z^2 的系数是多少?6.平面直角坐标系中,直线与 x 轴交于 A,与 y 轴交于B,直线与 x 轴交于 C,与 y 轴交于 D。
点 P 在圆 x^2+y^2=1 上,且线段 AP 与线段 CD 相交于点 O。
则△AOD 的面积的取值范围是什么?7.已知函数 f(x)=x^3-3x,则 f(x+2)-f(x-2) 的图像大致是什么?8.某群体中的每位成员使用移动支付的概率为 p,各成员的支付方式相互独立。
设 N 为该群体的成员数,X 为使用移动支付的人数,则 P(X=k) 的值是多少?9.△ABC 中,∠A=60°,BC=2,AD 是 BC 的中线,点 E 在 AB 上,使得 AE=AD。
若△ADE 为等边三角形且其面积为 1/3,则△ABC 的面积是多少?10.设 V 是半径为 R 的球的球面上四点 A,B,C,D 所构成的四面体的体积,V 的最大值是多少?11.双曲线 H 的左、右焦点分别为 F1(-c,0)、F2(c,0),坐标原点为 O,过 F1 作 H 的一条渐近线,垂足为 P。
若 OP=2c,则 H 的离心率是多少?12.设函数 f(x)=x^3-ax^2+bx-1,若 f(x) 在点 x=1 处的切线的斜率为 3,在 x=2 和抛物线 y=x^2+cx+d 的零点个数为 2,过点 (2,0) 的直线 y=kx+m 与 y=f(x) 的交点为 (3,4),则 a,b,c,d 的值分别是多少?13.已知向量 a=3i+2j,b=-2i+5j,则 a·b 的值是多少?14.曲线 y=2x^3-3x^2+6x-1 的切线在点 (1,4) 处的斜率是多少?15.函数 f(x)=x^2-2x+3 在区间 [-1,3] 上的最小值是多少?16.已知点 A(1,0,0),B(0,1,0),C(0,0,1),D(1,1,1),且 AD 与平面 BCD 垂直,AD 的长度为 2.则 BD 的长度是多少?17.等比数列 {an} 的首项为 a1=2,公比为 q=1/2.求 S10 的值和 a10 的值。
2018全国卷3高考试题及答案理科数学.doc
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合S= ,则S T=
(A) [2,3] (B)(- ,2] [3,+ )
(C)[3,+ )(D)(0,2] [3,+ )
(2)若z=1+2i,则
(A)1 (B) -1 (C) i (D)-i
, , , ,
, , .
设 为平面 的法向量,则 ,即 ,可取 ,
于是 .
(20)解:由题设 .设 ,则 ,且
.
记过 两点的直线为 ,则 的方程为 . .....3分
(Ⅰ)由于 在线段 上,故 .
记 的斜率为 , 的斜率为 ,则
.
所以 . ......5分
(Ⅱ)设 与 轴的交点为 ,
则 .
由题设可得 ,所以 (舍去), .
解:(Ⅰ) 的普通方程为 , 的直角坐标方程为 . ……5分
(Ⅱ)由题意,可设点 的直角坐标为 ,因为 是直线,所以 的最小值,
即为 到 的距离 的最小值, .
………………8分
当且仅当 时, 取得最小值,最小值为 ,此时 的直角坐标为 . ………………10分
24.(本小题满分10分)选修4-5:不等式选讲
(II)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
(II)设点P在 上,点Q在 上,求|PQ|的最小值及此时P的直角坐标.
2018年高考理科数学全国卷3-答案
2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B I ,故选C . 2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A .4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2rr r r r r r T C x x C x ---+==g g ,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =g .易知AB =max d =+=min d =所以26S ≤≤,故选A . 7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得2x -<或2x 0<<,此时,()f x递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B . 9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab CS =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =o g g △,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r =o,得23r =,球心到平面ABC 的距离为()224232-=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥D ABC -体积的最大值为19361833⨯⨯=,故选B . 11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离22(0)1()bc aPF b b b a-==+>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得22OP c b a =-=,所以166PF OP a ==.在2Rt OPF △中,222cos PF b PF O OF c ∠==,在12F F P △中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c +-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-,解得3ca=(负值舍去),即3e =.故选C .12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D . ∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B .解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b+=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题 13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-.15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个. 16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k+=,124y y =-g .∵1()1,M -,90AMB ∠=o,∴0MA MB =u u u r u u u r g ,即1212(2)(2)(1)(1)0y yy y k k+++--=g ,即2440k k -+=,解得2k =. 解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=o ,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==.故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-。
2018年全国卷3理科数学试题及参考答案
绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。
2018年全国(三卷)高考数学(理)试题及答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎣ 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2 C D12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
2018年全国3卷理科数学真题(解析版)
18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。
详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。
详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。
,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。
2018全国卷3高考试题及答案理科数学
绝密★启封并使用完成前试题种类:2018 年一般高等学校招生全国一致考试理科数学注意事项:1.本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分 .第Ⅰ卷 1 至 3 页,第Ⅱ卷3至5页.2.答题前,考生务势必自己的姓名、准考据号填写在本试题相应的地点 .3.所有答案在答题卡上达成,答在本试题上无效 .4. 考试结束后,将本试题和答题卡一并交回 .第Ⅰ卷一 . 选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的 . ( )设会合 S= S x P(x 2)(x 3) 0 ,T x x 0 ,则 SI T= 1(A) [2 ,3](B) (- ,2] U [3,+ )(C) [3,+)(D) ( 0, 2] U [3,+ )( 2)若 z=1+2i ,则4izz 1(A)1(B) -1(C) i(D)-iuuv ( 1 , uuuv 3,1), 则 ABC=( 3)已知向量 BA 2) ,BC (2 2 2 2(A)30 0 (B) 45 0 (C) 60 0(D)120 0( 4)某旅行城市为向旅客介绍当地的气温状况,绘制了一年中月均匀最高气温和均匀最低气温的雷达图。
图中 A 点表示十月的均匀最高气温约为 150C ,B 点表示四月的均匀最低气温约为 50 C 。
下边表达不正确的选项是(A) 各月的均匀最低气温都在 00C 以上 (B) 七月的均匀温差比一月的均匀温差大 (C) 三月和十一月的均匀最高气温基真同样(D) 均匀气温高于 20 0C 的月份有 5 个( 5)若 tan3 ,则 cos 2 2sin 24(A)64(B)48 (C) 1(D)16252525431( 6)已知 a 23 , b 4 4 , c 253 ,则( A ) b a c ( B ) a b c (C ) b ( 7)履行下列图的程序框图,假如输入的c a (D ) c a ba=4 ,b=6,那么输出的 n=( A )3 ( B )4 ( C )5 ( D )6( 8)在 △ABC 中, B = π,BC 边上的高等于 1BC ,则 cos A =43(A )3 10(B )10(C ) - 10(D ) - 3 1010101010(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( A )18 36 5 ( B )54 18 5 ( C )90( D )81(10) 在关闭的直三棱柱 ABC -A 1B 1 C 1 内有一个体积为 V 的球,若 AB BC ,AB=6 , BC=8,AA 1 =3,则 V 的最大值是( A )4π (B ) 9( ) π 322C 6(D )3( 11)已知 O 为坐标原点, F 是椭圆 C :x 2y 21(a b0) 的左焦点, A , Ba 2b 2分别为 C 的左,右极点 .P 为 C 上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为 (A )1(B )1(C )2323(D )34( 12)定义 “规范 01 数列 ”{a n }以下:{a n }共有 2m 项,此中 m 项为 0 ,m 项为 1,且对随意 k 2m ,a 1 , a 2 ,L , a k 中 0 的个数许多于 1 的个数 .若 m=4,则不一样的“规范 01 数列”共有(A )18 个(B )16 个(C )14 个(D )12 个第II 卷本卷包含必考题和选考题两部分 .第(13) 题 ~第(21) 题为必考题,每个试题考生都一定作答 .第(22) 题~第(24) 题为选考题,考生依据要求作答 .二、填空题:本大题共 3 小题,每题 5 分x - y + 1 ≥ 0( 13)若 x ,y 知足拘束条件 { x - 2y ? 0x + 2y - 2 ? 0则 z=x+y 的最大值为 _____________.(14)函数y = sin x -√3 cos x的图像可由函数y = sin x +√3 cos x的图像起码向右平移 _____________ 个单位长度获得。
(完整)2018年高考理科数学全国3卷(附答案)
(2)求 中点 的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数 .
(1)画出 的图像;
(2)当 , ,求 的最小值.
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学试题参考答案
一、选择题
1
2
3
4
5
6
7
8
9
10
11
12
C
D
A
B
C
A
D
B
C
B
C
B
二、填空题
三、解答题:共70分。解答题应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
等比数列 中, .
(1)求 的通项公式;
(2)记 为 的前 项和.若 ,求 .
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知 .
列联表如下:
超过
不超过
第一种生产方式
15
5
第二种生产方式
5
15
(3)由于 ,所以有99%的把握认为两种生产方式的效率有差异.
19.解:
(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC 平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考真题理科数学全国卷3试题及参考答案一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,答案 C解析:由A 得,1≥x ,所以{1,2}AB =2.()()12i i +-=( ) A .3i --B .3i -+C .3i -D .3i +答案 D解析:原式i i i i i +=++=-+-=312222,故选D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头, 凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-答案 B解析:97921sin 212cos 2=-=-=αα 5.222x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80答案C解析:由r r r r r r r r r r r x C x x C xx C T 310521055251522)2()(----+⋅=⋅⋅==令4310=-r ,则2=r所以40222255==C C rr6.直线20x y ++=分别与x 轴y 交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,答案 A解析:因为直线02=++y x 分别与x轴,y轴交于A ,B 两,点,所以)2,0(),0,2(--B A ,22||=AB .因为点p 在圆()2222x y -+=上,圆心为(2.0) 设圆心到直线的距离为1d ,则222|202|1=++=d ,故点P 到直线x+y+2=0的距离2d 的范围]23,2[,则]6,2[||212∈=∆d AB S ABM 7.函数422y x x =-++的图像大致为( )答案 D解析:当0=x 时,2=y 排除A 、B1,0),12(22423=--=+-='x x x x x y 时,0>'y 故选D8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X -<-,则p =( ) A .0.7B .0.6C .0.4D .0.3答案 B解析:4.0),1(=-=p p np DX 或者6.0=p4661064410)1()6()1()4(p p C X P p p C X P -==<-==,可知5.0>p ,故选B9.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =( ) A .2π B .3π C .4π D .6π答案C解析:有三角形面积公式知:4sin 21222c b a C ab S ABC-+==∆由余玄定理得:CC C ac c b a cos sin ,cos 2222=∴=-+,所以4π=C10.设A B C D ,,,是问一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为三棱锥D ABC -体积的最大值为( ) A.B.C.D.11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( ) AB .2CD答案C解析::a PO b OF b PF =∴==||;||,||22 在2POF Rt ∆中,cbOF PF ==||||cos 22θ在21F PF Rt ∆中,cbF F PF PF F F PF =-+=||||2||||||cos 2122222122θ22222222222336446422)6(4a c a c b a c b cbc b a c b -=-⇒=-+⇒=⋅-+∴3322=⇒=⇒e a c12.设3.0log 2.0=a ,2log 0.3b =,则( ) A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+答案B解析:因为3.0log ,3.0log 22.0==b a ,2log 1,2.0log 13.03.0==∴ba,1110,4.0log 113.0 <+<∴=+∴b a b a 即10<+<abba 又因为0,0,0<∴<>ab b a 即0<+<b a ab 故选B 二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()12a =,,()22b =-,,()1c λ=,.若()2c a b +∥,则λ=________. 答案21 解析:()2,4)2,2()2,1(22=-+=+b a 又因为()2c a b +∥,故有21,0124=∴=⨯-⨯λλ14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________. 答案3-=a解析:xxe ax ae y )1(++=',则3,21)0(-=⇒-=+='a a f15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在],0[π的零点个数为________.答案3个解析:因为],0[π∈x ,,619636,330ππππ≤+≤≤≤∴x x由图可知263ππ=+x 得9π=x ,2363ππ=+x 得94π=x ,2563ππ=+x 得97π=x ,16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.答案2=k解析:设),(),,(2211y x B y x A ,⎪⎩⎪⎨⎧==22212144x y x y)(4212221x x y y -=-∴2121214y y x x y y k +=--=∴因为︒=∠90AMB ,取AB 中点),(00y x M '分别过点A,B 作准线1-=x 的垂线,垂足为B A '',|)||(|21|||(|21||21||B B A A BF AF AB M M '+'=+=='∴ 又因为M '为AB 的中点则M M '平行于x 轴10=y2,221==+∴k y y三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。
17.(12分)等比数列{}n a 中,12314a a a ==,. ⑴求{}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m . 答案(1)12-=n n a 或1)2(--=n n a (2)6=m 解析:(1)因为3514,1a a a == 0)4(,42224=-=∴q q q q 2±=∴q12-=∴n n a 或1)2(--=n n a(2)1.当2=q 时,6321)21(1=--=m m S 6,642=∴=∴m m2.当2-=q 时,63)2(_1])2(1[1=---=m m S m m∴-=-∴,188)2(无解综上所述:6=m 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由; ⑵求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m超过m不超过m第一种生产方式 第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.答案(1)第二种生产方式的效率更高;(2)80=m超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)有99%的把握认为两种生产方式的效率有差异 解析:(1)第二种生产方式的效率更高,因为第二组多数数据集中在70min-80min 之间,第一组多数数据集中在80min-90min 之间,所以第一组完成任务的平均时间大于第二组,84202011==∑=i itE ,212012,7.7420E E tE i i>∴==∑=第二种生产方式的效率更高。
(2)中位数8028179=+=m超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)635.61020202020)25225(4022>=⨯⨯⨯-⨯=K 所以有99%的把握认为两种生产方式的效率有差异19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥镜M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 解析:(1)证明:因为正方形⊥ABCD 半平面CMD ⊥∴AD 半平面CMD ,⊥AD 平面CMD因为CM 在平面CMD 上,CM AD ⊥∴又CM MD ⊥∴⊥∴CN 平面AMD ,因为CM 在平面CMD 上,∴平面AMD ⊥平面BMC (2)如图建立直角坐标系因为ABC S ∆恒定,ABC M V CD MO -⊥∴,最大 )0,1,0();0,1,0();0,1,2();0,1,2();1,0,0(--D C B A M设面MAB 的法向量为),,(111z y x m =,设面MCD 的法向量为),,(222z y x n =yxz)1,1,0(),1,1,0(),1,1,2(),1,1,2(--=-=-=--=MD MC MB MA)2,0,1(0202222111=⇒⎩⎨⎧=-+=--z y x z y x 同理)0,0,1(=552sin ,55cos =∴=∴θθ 20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,. ⑴证明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解析:(1)解法一:设),(),,(2211y x B y x A则 (13)42121=+y x ① (13)42222=+y x ② 由①②得,03))((4))((21212121=-++-+y y y y x x x x则)()(43)()(21212121y y x x x x y y ++-=--其中m y y x x 2,22121=+=+ mx x y y k 432121-=--=又因为点),1(m M 为椭圆内的点,且0>m 当1=x 时,椭圆上的点的纵坐标23±=y ,)23,0(∈∴m )21,(43--∞∈-=m k 21<∴k 法二:设直线l 方程为t kx y +=设),(),,(2211y x B y x A⎪⎩⎪⎨⎧=++=13422y x t kx y 联立消y 得01248)34(222=-+++t ktx x k 则0)43)(124(4642222>+--=∆k t t k 得..........3422t k >+① 且2438221=+-=+kktx x m ktt x x k y y 24362)(22121=+=++=+ 因为0,0,0<<∴>k t m ,且 (4432)k k t -+=② 由①②得222)443(43kk k -+=+ 21>∴k 或21-<k因为0<k 21-<∴k(2)0FP FA FB ++= 0=+因为),1(m M P ∴的坐标为)2,1(m -由于P 在椭圆上,134412=+∴m 43=∴m 143-=-=∴mk 直线l 方程为)1(43--=-x y ,即47+-=x y⎪⎪⎩⎪⎪⎨⎧=++-=∴1344722y x x y 0156282=+-x x 281,22121==+x x x x 314)(221=-=+-=+x x aca23)023()1(||22=--+-= ||2|||FA =+ |||,|,||FA ∴成等差数列 |||||||22121x x acx a c a x a c a FA d -±=+--=-= 282134)(2121221±=-+±=x x x x 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; ⑵若0x =是()f x 的极大值点,求a . 解析(1)111)1ln(212)1ln()(-+++=-++++='x x x x x x f ,2)1(111)(+-+=''x x x f 令00)(≥⇒≥''x x f ,0≥x 时,)(x f '递增,01<<-x 时,)(x f '递减 又当0=x 时,0)(='x f ,0)(≥'∴x f 恒成立,所以当10x -<<时,()0f x <;当0x >时,()0f x >(2)1112)1ln()12()(-+++++='x ax x ax x f0)1(1)1(2112)1ln(2)(22≤+--++++++=''x ax x ax x ax x a x f 012)1)(12()1ln()1(222≤-+++++++ax ax x ax x x a 043)1ln()1(222≤+++++x ax ax x x a x x x x x a -≤++++)43)1ln()1(2(22设);43)1ln()1(2)(22x x x x x h ++++=46)1(2)1ln()1(4)(++++++='x x x x x h0)0(,06)0(=>='h h所以在0=x 的邻域内,0>x 时0)(>x h ,0<x 时0)(<x h0>x 时,61,43)1ln()1(222-≤++++-≤a xx x x x a 0<x 时,61,43)1ln()1(222-≥++++-≥a xx x x x a61-=∴a(二)选考题:共10分,请考生在第22、23题中任选一题作答。