物理化学主要公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学主要公式
第一章 气体的pVT 关系
1. 理想气体状态方程式
nRT RT M m pV ==)/(
或 RT n V p pV ==)/(m
式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成
摩尔分数 y B (或x B ) = ∑A
A B /n n
体积分数 /
y B m,B B *
=V ϕ∑*
A
V
y A
m ,A
式中∑A
A n 为混合气体总的物质的量。A m,*
V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A
A m ,A V y 为
在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量
∑∑∑===B
B
B
B B B
B mix //n M n m M y M
式中 ∑=B
B m m 为混合气体的总质量,∑=B
B n n 为混合气体总的物质的量。上述各式适用于任意的
气体混合物。
(3) V V p p n n y ///B B B B
*
=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*
B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律
p B = y B p ,∑=B
B p p
上式适用于任意气体。对于理想气体
V RT n p /B B =
4. 阿马加分体积定律
V RT n V /B B =*
此式只适用于理想气体。
5. 范德华方程
RT b V V a p =-+))(/(m 2m
nRT nb V V an p =-+))(/(22
式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。
6. 维里方程
......)///1(3m 2m m m ++++=V D V C V B RT pV
及 ......)1(3'2''m ++++=p D p C p B RT pV
上式中的B ,C ,D,…..及B ’,C ’,D ’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。
适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。
7. 压缩因子的定义
)/()/(m RT pV nRT pV Z ==
Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。
第二章 热力学第一定律
1. 热力学第一定律的数学表示式
W Q U +=∆
或 'amb δδδd δdU Q W Q p V W =+=-+
规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。
2. 焓的定义式
3. 焓变
(1) )(pV U H ∆+∆=∆
式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。 (2) 2
,m 1d p H nC T ∆=⎰
此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变
此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热
V Q U =∆ (d 0,'0)V W == p Q H =∆ (d 0,'0)p W ==
6. 热容的定义式 (1)定压热容和定容热容
δ/d (/)p p p C Q T H T ==∂∂
δ/d (/)V V V C Q T U T ==∂∂
(2)摩尔定压热容和摩尔定容热容
pV
U H +=2
,m 1d V U nC T
∆=⎰
,m m /(/)p p p C C n H T ==∂∂ ,m m /(/)V V V C C n U T ==∂∂
上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容)
式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。
(5)摩尔定压热容与温度的关系 23,m p C a bT cT dT =+++ 式中a , b , c 及d 对指定气体皆为常数。 (6)平均摩尔定压热容
21,m ,m 21d /()T
p p T C T T T C =-⎰
7. 摩尔蒸发焓与温度的关系
2
1
vap m 2vap m 1vap ,m ()()d T p T
H T H T C T ∆=∆+∆⎰
或 vap m vap ,m (/)p p H T C ∂∆∂=∆
式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功 (1)定义式
V p W d amb -=∂
或 V p W d amb ∑-=
(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。 (3) )(21amb V V p W --= 适用于恒外压过程。
(4) )/ln()/ln(d 12122
1p p nRT V V nRT V p W V V =-=-=⎰ 适用于理想气体恒温可逆过程。
(5) ,m 21()V W U nC T T =∆=- 适用于,m V C 为常数的理想气体绝热过程。
,m
//p p p c C m C
M
==