高中 数学 平面向量 复习试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学 平面向量 复习试卷
1.设a ,b 都是非零向量,下列四个条件中,使a |a |=b
|b |成立的充分条件是( )
A .a =-b
B .a ∥b
C .a =2b
D .a ∥b 且|a |=|b |
2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( ) A .0 B .1 C .2 D .3
3.给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则 AB =
DC 是四边形
ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )
A .②③
B .①②
C .③④
D .①④
4.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( )
A .1
B .2
C .3
D .4
5.在△ABC 中, AB =c , AC =b .若点D 满足 BD =2 DC ,则 AD =( )
A.13b +23c
B.53c -23b
C.23b -1
3
c D.23b +1
3
c 6.在△ABC 中,N 是AC 边上一点且 AN =12 NC ,P 是BN 上一点,若 AP =m AB +29
AC ,则实数
m 的值是________.
7.已知a ,b 是不共线的向量, AB =λa +b ,
AC =a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条
件为( )
A .λ+μ=2
B .λ-μ=1
C .λμ=-1
D .λμ=1
8.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记 AB ,
BC 分别为a ,b ,则
AH =( )
A.25a -45b
B.25a +45b C .-25a +45
b D .-25a -4
5
b
9.(2015·新课标全国卷Ⅰ)设D 为△ABC 所在平面内一点, BC =3
CD ,则( )
A . AD =-13
AB +43 AC B . AD =13 AB -43 AC
C . A
D =43 AB +13 AC D . AD =43 AB -13
AC
10.(2014·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则 EB +
FC =( )
A . AD B.12 AD C . BC D.12
BC
11.(2015·新课标全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.
12.(2017·杭州模拟)在△ABC 中,已知M 是BC 中点,设 CB =a ,
CA =b ,则 AM =( )
A.12a -b
B.12a +b C .a -12
b D .a +1
2
b
13.在四边形ABCD 中, AB =a +2b , BC =-4a -b ,
CD =-5a -3b ,
则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形
D .以上都不对
14.如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )
A .e 1与e 1+e 2
B .e 1-2e 2与e 1+2e 2
C .e 1+e 2与e 1-e 2
D .e 1+3e 2与6e 2+2e 1
15. (2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13
BC ,若 AB =a ,
AC =b ,则 PQ =( )
A.13a +13b B .-13a +13b C.13a -13
b D .-13a -1
3
b
16.(2016·泉州调研)若向量a ,b 不共线,则下列各组向量中,可以作为一组基底的是( ) A .a -2b 与-a +2b B .3a -5b 与6a -10b C .a -2b 与5a +7b
D .2a -3b 与12a -3
4
b
17.如图,在△OAB 中,P 为线段AB 上的一点, OP =x OA +y
OB ,且 BP
=2
PA ,则( )
A .x =23,y =13
B .x =13,y =23
C .x =14,y =34
D .x =34,y =1
4
18.已知A (-2,4),B (3,-1),C (-3,-4).设 AB =a , BC =b , CA =c ,且 CM =3c ,
CN =-
2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ;(3)求M ,N 的坐标及向量
MN 的坐标.
19.(2015·新课标全国卷Ⅰ)已知点A (0,1),B (3,2),向量 AC =(-4,-3),则向量
BC =( )
A .(-7,-4)
B .(7,4)
C .(-1,4)
D .(1,4)
20.(2016·全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.
21.若向量
AB=(2,4),
AC=(1,3),则
BC=()
A.(1,1) B.(-1,-1) C.(3,7) D.(-3,-7)
22.若三点A(1,-5),B(a,-2),C(-2,-1)共线,则实数a的值为________.
23.设向量a=(x,1),b=(4,x),且a,b方向相反,则x的值是()
A.2 B.-2 C.±2 D.0
24.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,那么a与b的数量积等于()
A.-
7
2B.-
1
2C.
3
2 D.
5
2
25.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和
DC上,且
BE=2
3
BC,
DF=1
6
DC,则
AE·
AF的值为________.
26.已知
AB=(2,1),点C(-1,0),D(4,5),则向量
AB在
CD方向上的投影为()
A.-
32
2B.-35C.
32
2D.3 5
27.已知向量a与b的夹角为60°,且a=(-2,-6),|b|=10,则a·b=________.
28.如图所示,在等腰直角三角形AOB中,OA=OB=1,
AB=4
AC,则
OC·(
OB-
OA)=________.
29.已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=________.
30.(2017·衡水模拟)已知|a|=1,|b|=2,a与b的夹角为π
3,那么|4a-b|=()
A.2 B.6 C.2 3 D.12
31.已知|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为()
A.30°B.60°C.120°D.150°
32. (2016·兰州一模)设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=()
A. 5
B.10 C.2 5 D.10
33.在△ABC中,“△ABC为直角三角形”是“
AB·
BC=0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
34.已知|a|=6,|b|=3,向量a在b方向上的投影是4,则a·b为()
A.12 B.8 C.-8 D.2
35.已知平面向量a=(-2,m),b=(1,3),且(a-b)⊥b,则实数m的值为()
A.-2 3 B.2 3 C.4 3 D.6 3
36.设向量a,b满足|a|=1,|a-b|=3,a·(a-b)=0,则|2a+b|=()
A.2 B.2 3 C.4 D.4 3
37.(2017·洛阳质检)已知|a|=1,|b|=6,a·(b-a)=2,则向量a与b的夹角为()
A.
π
2 B.
π
3 C.
π
4 D.
π
6
38.如图,平行四边形ABCD中,AB=2,AD=1,A=60°,点M在AB边上,
且AM=
1
3AB,则
DM·
DB等于________.
39.(2016·天津高考)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接
DE并延长到点F,使得DE=2EF,则
AF·
BC的值为()
A.-
5
8 B.
1
8 C.
1
4 D.
11
8
40.(2016·全国甲卷)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=()
A.-8 B.-6 C.6 D.8
41.(2016·全国丙卷)已知向量
BA=⎝⎛⎭⎫
1
2,
3
2

BC=⎝⎛⎭⎫
3
2,
1
2
,则∠ABC=()
A.30°B.45°C.60°D.120°
42.(2014·新课标全国卷Ⅱ)设向量a,b满足|a+b|=10,|a-b|=6,则a·b=()
A.1 B.2 C.3 D.5
43.(2016·全国乙卷)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.
44.(2014·新课标全国卷Ⅰ)已知A,B,C为圆O上的三点,若AO―→=
1
2(
AB+
AC),则
AB与
AC
的夹角为________.
45.(2013·全国卷Ⅰ)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b,若b·c=0,则t=________.
46.(2013·新课标全国卷Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则
AE·
BD=________.
47.(2012·新课标全国卷)已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
48.若平面向量a=(-1,2)与b的夹角是180°,且|b|=3,则b的坐标为()
A.(3,-6) B.(-3,6) C.(6,-3) D.(-6,3)
49.已知函数f(x)=a·b,其中a=(2cos x,-3sin 2x),b=(cos x,1),x∈R.
(1)求函数y=f(x)的单调递减区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,
a=7,且向量m=(3,sin B)与n=(2,sin C)共线,求边长b和c的值.
50.已知向量a=⎝⎛⎭⎫
sin x,
3
2,b=(cos x,-1).(1)当a∥b时,求tan 2x的值;(2)求函数f(x)=(a+b)·b
在⎣⎡⎦⎤

π
2,0上的值域.。

相关文档
最新文档