小升初数学专题讲义:几何

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学专题讲义:几何
一、小升初考试热点及命题方向
几何问题是小升初考试的重要内容,分值一般在12-14分(包含1道大题和2道左右的小题)。

尤其重要的就是平面图形中的面积计算,几何从内容方面,可以简单的分为直线形面积(三角形四边形为主),圆的面积以及二者的综合。

其中直线形面积近年来考的比较多,值得我们重点学习。

从解题方法上来看,有割补法,代数法等,有的题目还会用到有关包含与排除的知识。

二、典型例题解析
1 等积变换在三角形中的运用
首先我们来讨论一下和三角形面积有关的问题,大家都知道,三角形的面积=1/2×底×高
因此我们有
【结论1】等底的三角形面积之比等于对应高的比
【结论2】等高的三角形面积之比等于对应底的比
【例1】如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?
【例2】将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?
燕尾定理在三角形中的运用
下面我们再介绍一个非常有用的结论:
【燕尾定理】:
在三角形ABC中,AD,BE,CF相交于同一点O,那么S△ABO:S△ACO=BD:DC
2 差不变原理的运用
【例4】左下图所示的
ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块阴影部分的面积和比△EFG的面积大10cm2,求CF的长。

相关文档
最新文档