2019年湖北省襄阳市中考数学试题(Word版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖北省襄阳市中考数学试题(Word版含答案)
2019年湖北襄阳市中考数学
满分:150分时间:120分钟
一.选择题:本大题共10个小题,每小题3分,共30分
1.计算:的结果是()
A.3
B.
C.-3
D.±3
2.下列运算正确的是()
A. B. C. D.
3.如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()
A.60°
B.50°
C.40°
D.30°
4.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对面的面上的字是()
A.青
B.来
C.斗
D.奋
5.下列图形中,既是轴对称图形又是中心对称图形的是()
6.不等式组的解集在数轴上用阴影表示正确的是()
7.如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()
A.正方形
B.矩形
C.梯形
D.菱形
8.下列说法错误的是()
A.必然事件发生的概率是1
B.通过大量重复试验,可以用频率估计概率
C.概率很小的事件不可能发生
D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得
9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差三钱.问合伙人数,羊价各是多少?设合伙人数为x人,所列方程正确的是()
A. B.
C. D.
10.如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()
A.AP=2OP
B.CD=2OP
C.OB⊥AC
D.AC平分OB
二.填空题:本大题共6个小题,每小题3分,共18分
11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.
12.定义:,则方程的解为 .
13.从2,3,4,6中随机选取两个数记为和(),那么点在直线上的概率是.
14.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是.(只填序号).
15.如图,若被击打的小球飞行高度(单位:m)与飞行时间t(单位:s)之间具有的关系
为,则小球从飞出到落地所用的时间为s.
第14题图第15题图第16题图
16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则.
三.解答题:本大题共9个小题,共72分
17.(本小题满分6分)
先化简,再求值:其中.
18.(本小题满分6分)
今年是中华人民共和国成立70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:
成绩x(分)分组频数频率
60≤x<70 15 0.30
70≤x<80 a0.40
80≤x<90 10 b
90≤x<100 5 0.10
(1)表中a= ,b= ;
(2)这组数据的中位数落在范围内;
(3)判断:这组数据的众数一定落在70≤x<80范围内,这个说法(填“正确”或“错误”)
(4)这组数据用扇形统计图表示,成绩在80≤x<90范围内的扇形圆心角的大小为;(5)若成绩不小于80分为优秀,则全校大约有名学生获得优秀成绩.
19.(本小题满分6分)
改善小区环境,争创文明家园,如图所示,某社区决定再一块长(AD)16m,宽(AB)的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行其余部分种草,要使草坪部分的总面积为112m²,则小路的宽应为多少?
20.(本小题满分6分)
襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉锁AB的底端A到塔柱底端C的距离为121m,拉锁AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据:
sin37°≈0.60,cos37°≈0.80,t an37°≈0.75,).
21.(本小题满分7分)
如图,已知一次函数y1=kx+b与反比例函数的图象在第一、第三象限分别交于A(3,4),B (a,-2)两点,直线AB与轴,x轴分别交于C,D两点.
(1)求一次函数和反比例函数的解析式;
(2)比较大小:AD BC(填“>”或“<”或“=”)
(3)直接写出时的取值范围.
22.(本小题满分8分)
如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.
(1)求证:DG是⊙O的切线;
(2)若DE=6,BC=,求优弧的长.
23.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、
乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的价格和售价如下表所示:有机蔬菜进价(元/kg)售价(元/kg)
甲m16
乙n18
(1)该超市购进价种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元,求m,n的值;
(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完,求超市当天售完这两种蔬菜获得的利润y(元)于购进购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;
(3)在(2)的条件下,超市在获得的利润y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.
24.(本题满分10分)
(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE 于点O,点G,F分别在边CD,AB上,GF⊥AE.
①求证:DQ=AE;②推断:的值为;
(2)类比探究:如图(2),在矩形ABCD中,(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接CP,当时,若tan∠CGP=,GF=,求CP的长.
25.(本小题满分13分)
如图,在直角坐标系中,直线与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.
(1)直接写出点A,点B,点C的坐标和抛物线的解析式;
(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;
(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,请说明理由.
参考答案
一.选择题
题号 1 2 3 4 5 6 7 8 9 10 答案 A D B D B C D C B A
二.填空题
11.1.2×10812.x=1 13.14.②15.4 16.
三.解答题
专题15 尺规作图、投影与视图(第01期)-2019年中考真题数学试题分项汇编
(解析版)
专题15 尺规作图、投影与视图
1.(2019•桂林)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为
A.πB.2π
C.3πD)π
【答案】C
的正三角形.
∴正三角形的边长.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π,
∴侧面积为1
2
⨯2π×2=2π,∵底面积为πr2=π,∴全面积是3π.故选C.
【名师点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
2.(2019•长春)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是
A.B.
C.D.
【答案】A
【解析】从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选A.【名师点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
3.(2019•赤峰)如图是一个几何体的三视图,则这个几何体是
A.三棱锥B.圆锥
C.三棱柱D.圆柱
【答案】B
【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B.
【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
4.(2019•吉林)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为
A.B.
C.D.
【答案】D
【解析】从上面看可得四个并排的正方形,如图所示:,故选D.【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(2019•黄冈)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是
A.B.
C.D.
【答案】B
【解析】该几何体的左视图只有一列,含有两个正方形.故选B.
【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.(2019•河南)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是
A.主视图相同B.左视图相同
C.俯视图相同D.三种视图都不相同
【答案】C
【解析】图①的三视图为:
图②的三视图为:,故选C.
【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.
7.(2019•河北)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=
A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x
【答案】A
【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.
【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是
A. B.C.D.
【答案】C
【解析】几何体的主视图为:,故选C.
【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.(2019•新疆)下列四个几何体中,主视图为圆的是
A.B.C.D.
【答案】D
【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;
C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.
【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.
10.(2019•安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是
A.B.C.D.
【答案】C
【解析】几何体的俯视图是:,故选C.
【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.(2019•潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是
A.俯视图不变,左视图不变B.主视图改变,左视图改变
C.俯视图不变,主视图不变D.主视图改变,俯视图改变
【答案】A
【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.
【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.
12.(2019•长沙)某个几何体的三视图如图所示,该几何体是
A.B.C.D.
【答案】D
【解析】由三视图可知:该几何体为圆锥.故选D.
【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.
13.(2019•深圳)下列哪个图形是正方体的展开图
A.B.C.
D.
【答案】B
【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.
【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;
第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是
A.B.
C.D.
【答案】B
【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;
选项B能折叠成原几何体的形式;
选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.
【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.(2019•南充)如图是一个几何体的表面展开图,这个几何体是
A .
B .
C .
D .
【答案】C
【解析】由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.
【名师点睛】考查了几何体的展开图,解题时勿忘记三棱柱的特征.16.(2019•河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,
C为圆心,大于1
2
AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于
点O.若点O是AC的中点,则CD的长为
A
.B.4 C.3 D
【答案】A
【解析】如图,连接FC,则AF=FC.
∵AD∥BC,∴∠FAO=∠BCO.
在△FOA与△BOC中,
FAO BCO
OA OC
AOF COB
∠=∠


=

⎪∠=∠

,∴△FOA≌△BOC(ASA),∴AF=BC=3,
∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,
∴CD=.故选A.
【名师点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.17.(2019•包头)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分
别交AB、AC于点D,E,再分别以点D、E为圆心,大于1
2
DE为半径画弧,两弧交于
点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是
A.1 B.3 2
C.2 D.5 2
【答案】C
【解析】由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,
所以△ACG的面积=1
2
×4×1=2.故选C.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了交平分线的性质.
18.(2019•北京)已知锐角∠AOB,如图,
(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是
A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD
【答案】D
【解析】由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,
∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=1
3
∠MON=20°,故B选项正确;
∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,
又∠CMN=1
2
∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误,故选D.
【名师点睛】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.
19.(2019•广西)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG 的度数为
A.40°B.45°
C.50°D.60°
【答案】C
【解析】由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,
∴∠BCG=1
2
∠ACB=50°.故选C.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.
20.(2019•新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径
画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于1
2
MN的长为半径
画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是
A.BP是∠ABC的平分线B.AD=BD
C.S△CBD∶S△ABD=1∶3 D.CD=1
2 BD
【答案】C
【解析】由作法得BD平分∠ABC,所以A选项的结论正确;
∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;
∵∠CBD=1
2
∠ABC=30°,∴BD=2CD,所以D选项的结论正确;
∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选C.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
21.(2019•荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD
交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是
A.①②B.①③C.②③D.①②③
【答案】C
【解析】∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选C.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质和等腰三角形的性质.
22.(2019•河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.
D.
【答案】C
【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.
23.(2019•长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大
于1
2
AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,
则∠CAD的度数是
A.20°B.30°C.45°D.60°
【答案】B
【解析】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.
【名师点睛】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.
24.(2019•襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是
A.正方形B.矩形C.梯形D.菱形
【答案】D
【解析】由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选D.
【名师点睛】本题考查基本作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
25.(2019•北京)在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)
【答案】①②
【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.
【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.
26.(2019•攀枝花)如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面__________.(填字母)
【答案】E
【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.
【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.
27.(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.
【答案】cm2
【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱
柱的高为3,所以其左视图的面积为=cm2),故答案为cm2.
【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.
28.(2019•广东)如图,在△ABC中,点D是AB边上的一点.
(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若AD
DB
=2,求
AE
EC
的值.
【解析】(1)如图,∠ADE为所作.
(2)∵∠ADE=∠B,
∴DE∥BC,
∴AE AD
EC DB
=2.
【名师点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
29.(2019•杭州)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求
∠B的度数.
【解析】(1)∵线段AB的垂直平分线与BC边交于点P,
∴PA=PB,
∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,
∴∠APC=2∠B.
(2)根据题意可知BA=BQ,
∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,
∴∠BQA=2∠B,
∵∠BAQ+∠BQA+∠B=180°,
∴5∠B=180°,
∴∠B=36°.
【名师点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.
30.(2019•吉林)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:
(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.
【解析】(1)如图,菱形AEBF即为所求.
(2)如图,四边形CGDH即为所求.
【名师点睛】本题考查作图﹣应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.
(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.
(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.
(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.
【解析】(1)如图所示,线段AF即为所求.
(2)如图所示,点G即为所求.
(3)如图所示,线段EM即为所求.
【名师点睛】本题考查了作图﹣应用与设计作图,平行线四边形的判定和性质,等腰三角形的判定和性质,对顶角的性质,正确的作出图形是解题的关键.32.(2019•江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中以BC为边作一个45°的圆周角.
【解析】(1)如图1,EF为所作.
(2)如图2,∠BCD为所作.
【名师点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考
查了圆周角定理.。

相关文档
最新文档