高三几何证明4-1-1

合集下载

【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线

【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线

第2讲 圆周角定理与圆的切线【高考会这样考】考查圆的切线定理和性质定理的应用. 【复习指导】本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角. (2)圆周角定理:圆周角的度数等于它所对弧度数的一半. (3)圆周角定理的推论①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径. 2.圆的切线(1)直线与圆的位置关系直线与圆交点的个数 直线到圆心的距离d 与圆的半径r 的关系 相交 两个 d <r 相切 一个 d =r 相离无d >r(2)切线的性质及判定①切线的性质定理:圆的切线垂直于经过切点的半径. ②切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线. (3)切线长定理从圆外一点引圆的两条切线长相等. 3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.双基自测1.如图所示,△ABC 中,∠C =90°,AB =10,AC =6,以AC 为直径的圆与斜边交于点P ,则BP 长为________.解析 连接CP .由推论2知∠CP A =90°,即CP ⊥AB ,由射影定理知,AC 2=AP ·AB .∴AP =3.6,∴BP =AB -AP =6.4. 答案 6.42.如图所示,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D是优弧BC 上的点,已知∠BAC =80°, 那么∠BDC =________. 解析 连接OB 、OC ,则OB ⊥AB ,OC ⊥AC ,∴∠BOC =180°-∠BAC =100°,∴∠BDC =12∠BOC =50°. 答案 50°3.(2011·广州测试(一))如图所示,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30°,则圆O 的面积为________.解析 连接OC ,OB ,依题意得,∠COB =2∠CAB =2∠BCD =60°,又OB =OC , 因此△BOC 是等边三角形,OB =OC =BC =1,即圆O 的半径为1, 所以圆O 的面积为π×12=π. 答案 π4.(2011·深圳二次调研)如图,直角三角形ABC 中,∠B =90°,AB =4,以BC 为直径的圆交AC 边于点D ,AD =2,则∠C 的大小为________.解析 连接BD ,则有∠ADB =90°.在Rt △ABD 中,AB =4,AD =2,所以∠A =60°;在Rt △ABC 中,∠A =60°,于是有∠C =30°. 答案 30°5.(2011·汕头调研)如图,MN 是圆O 的直径,MN 的延长线与圆O 上过点P 的切线P A 相交于点A ,若∠M =30°,AP =23,则圆O 的直径为________.解析 连接OP ,因为∠M =30°,所以∠AOP =60°,因为P A 切圆O 于P ,所以OP ⊥AP ,在Rt △ADO 中,OP =AP tan ∠AOP =23tan 60°=2,故圆O 的直径为4.答案 4考向一 圆周角的计算与证明【例1】►(2011·中山模拟)如图,AB 为⊙O 的直径,弦AC 、BD 交于点P ,若AB=3,CD =1,则sin ∠APB =________.[审题视点] 连结AD ,BC ,结合正弦定理求解. 解析 连接AD ,BC .因为AB 是圆O 的直径,所以∠ADB =∠ACB =90°.又∠ACD =∠ABD ,所以在△ACD 中,由正弦定理得:CD sin ∠DAC =AD sin ∠ACD =AD sin ∠ABD =AB sin ∠ABD sin ∠ABD =AB =3,又CD =1,所以sin ∠DAC =sin ∠DAP =13,所以cos ∠DAP =23 2.又sin∠APB=sin (90°+∠DAP)=cos∠DAP=23 2.答案23 2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.【训练1】如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.解析连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案16π考向二弦切角定理及推论的应用【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线段之间的比例关系,从而求解.解析∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴BEAC=ABBC.又AE∥BC,∴EFAF=BEAC,∴ABBC=EFAF.又AD∥BC,∴AB=CD,∴AB=CD,∴CDBC=EFAF,∴58=EF6,∴EF=308=154.答案15 4(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE=CDBC,即BC2=BE×CD.高考中几何证明选讲问题(二)从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB 延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.。

高中数学选修4系列1-4-5知识点总结(全套)

高中数学选修4系列1-4-5知识点总结(全套)

1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

解题基本方法配方法换元法待定系数法定义法数学归纳法参数法反证法消去法分析与综合法特殊与一般法类比与归纳法观察与实验法常用的数学思想数形结合思想分类讨论思想函数与方程思想转化(化归)思想2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学 选修4--5知识点1、不等式的基本性质①(对称性)b a > ②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号).⑥0,2b aab a b >+≥若则(当仅当a=b 时取等号) 0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,a b R +∈(,当且仅当a b =时取""=号). (即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ 是两个向量,则,αβαβ⋅≤ 当且仅当β 是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和. ⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等. 5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔> ⑵当01a <<时, ()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域.⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求: 第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型: ①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.选修4-4数学知识点一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:① 理解坐标系的作用.② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、知识归纳总结:1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

【恒心】高考数学冲刺复习-选修4-1(几何证明选讲)知识点精华总结【清华大学张云翼校对】【李炳璋提供】

【恒心】高考数学冲刺复习-选修4-1(几何证明选讲)知识点精华总结【清华大学张云翼校对】【李炳璋提供】

选修4-1几何证明选讲编者:李炳璋校对:张云翼(清华大学)【***】感激并感谢好友张云翼对此份材料一丝不苟的校对!也希望用到此份材料的童鞋们,怀揣一颗感恩之心,感谢你们张学长的认真校对,向他学习,学习他那种的严谨的态度。

他不愧是能以高分考入清华大学的学生,他不仅仅是你们的榜样,更是李炳璋我的偶像!李炳璋(原名李东升)---全国唯一一位曾经连续三年命中过高考试题中理科和文科一些试题的人平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

经过三角形一边的中点与另一边平行的直线必平分第三边。

经过梯形一腰的中点,且与底边平行的直线平分另一腰。

平分线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

相似三角形的判定及性质。

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

圆周角定理(注意一条弦对应两个弧,也就对应两个圆周角。

4-28几何证明选讲(选修4-1)

4-28几何证明选讲(选修4-1)

高考专题训练二十八 几何证明选讲(选修4-1) 班级________ 姓名_______ 时间:45分钟 分值:100分 总得分_______一、填空题(每小题6分,共30分)1.(2011·陕西)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.解析:由∠B =∠D ,AE ⊥BC ,知△ABE ∽△ADC ,∴AE AC =AB AD ,∴AE =AB AD ·AC =6×412=2,∴BE =AB 2-AE 2=32=4 2.答案:4 22.(2011·湖南)如图,A 、E 是半圆周上的两个三等分点,直线BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则AF 的长为________.解析:如图所示,∵A 、E 是半圆周上两个三等分点,∴△ABO 和△AOE 均为正三角形.∴AE =BO =12BC =2.∵AD ⊥BC , ∴AD =22-12=3,BD =1.又∠BOA =∠OAE =60°,∴AE ∥BD .∴△BDF ∽△EAF ,∴DF AF =BD AE =12. ∴AF =2FD ,∴3AF =2(FD +AF )=2AD =23,∴AF =233. 答案:2333.(2011·深圳卷)如图,A ,B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则DE =________.解析:连接AB ,设BC =AD =x ,结合图形可得△CAB 与△CED 相似,于是AC EC =CB CD. 即4x +10=x 4+x⇒x =2. 又因为AC 是小圆的直径,所以∠CBA =90°,由于∠CDE =∠CBA ,所以∠CDE =90°.在直角三角形CDE 中,DE =CE 2-CD 2=122-62=6 3.答案:6 34.(2011·佛山卷)如图,过圆外一点P 作⊙O 的割线PBA 与切线PE ,E 为切点,连接AE 、BE ,∠APE 的平分线分别与AE 、BE 相交于点C 、D ,若∠AEB =30°,则∠PCE =________.解析:由切割线性质得:PE 2=PB ·PA ,即PE PA =PB PE, ∴△PBE ∽△PEA ,∴∠PEB =∠PAE ,又△PEA 的内角和为2(∠CPA +∠PAE )+30°=180°,所以∠CPA +∠PAE =75°,即∠PCE =75°.答案:75°5.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD=a ,CD =a 2,点E ,F 分别为线段AB ,AD 的中点,则EF =________.分析:本题考查勾股定理及三角形中位线的性质.解析:连接BD 、DE ,由题意可知DE ⊥AB ,DE =32a ,BC =DE =32a ,∴BD = ⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫32a 2=a ,∴EF =12BD =a 2. 答案:a 2二、解答题(每小题10分,共70分) 6.如图,已知△ABC 的两条角平分线AD 和CE 相交于H ,∠B =60°,F 在AC 上,且AE =AF .(1)求证:B ,D ,H ,E 四点共圆;(2)求证:CE 平分∠DEF .证明:(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°.于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连接BH,则BH为∠ABC的平分线,所以∠HBD=30°.由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°,所以CE平分∠DEF.7.如图所示,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交BC的延长线于F,DE是BD的延长线,连接CD.(1)求证:∠EDF=∠CDF;(2)求证:AB2=AF·AD.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵四边形ABCD是⊙O的内接四边形,∴∠CDF=∠ABC.又∠ADB与∠EDF是对顶角,∴∠ADB=∠EDF.又∠ADB=∠ACB,∴∠EDF=∠CDF.(2)由(1)知∠ADB =∠ABC .又∵∠BAD =∠F AB ,∴△ADB ∽△ABF ,∴AB AF =AD AB,∴AB 2=AF ·AD . 8.(2011·辽宁)如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(1)证明:CD ∥AB ;(2)延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.证明:(1)因为EC =ED ,所以∠EDC =∠ECD .因为A ,B ,C ,D 四点在同一圆上,所以∠EDC =∠EBA ,故∠ECD =∠EBA .所以CD ∥AB .(2)由(1)知,AE =BE ,因为EF =EG ,故∠EFD =∠EGC ,从而∠FED =∠GEC .连接AF ,BG ,则△EFA ≌△EGB ,故∠F AE =∠GBE .又CD ∥AB ,∠EDC =∠ECD ,所以∠F AB =∠GBA ,所以∠AFG +∠GBA =180°,故A ,B ,G ,F 四点共圆.9.已知,如图,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交直线AC 于点E ,交AD 于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=GE ·GF .证明:(1)连接CB ,∵∠ACB =90°,AG ⊥FG ,又∵∠EAG =∠BAC ,∴∠ABC =∠AEG .∵∠ADC =180°-∠ABC =180°-∠AEG =∠CEF ,∴∠ADC +∠FDC =∠CEF +∠FDC =180°,∴C ,D ,F ,E 四点共圆.(2)由C ,D ,F ,E 四点共圆,知∠GCE =∠AFE ,∠GEC =∠GDF ,∴△GCE ∽△GFD ,故GC GF =GE GD,即GC ·GD =GE ·GF .∵GH 为圆的切线,GCD 为割线,∴GH 2=GC ·GD ,∴GH 2=GE ·GF .10.(2011·课标)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径. 解:(1)证明:连接DE ,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即AD AC =AE AB.又∠DAE =∠CAB ,从而△ADE ∽△ACB . 因此∠ADE =∠ACB .所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12.故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于∠A =90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12(12-2)=5.故C,B,D,E四点所在圆的半径为5 2.11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.证明:(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.12.(2011·河南省教学质量调研)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB =FC ;(2)求证:FB 2=FA ·FD ;(3)若AB 是△ABC 外接圆的直径,∠EAC =120°,BC =6 cm ,求AD 的长.解:(1)证明:∵AD 平分∠EAC .∴∠EAD =∠DAC .∵四边形AFBC 内接于圆,∴∠DAC =∠FBC .∵∠EAD =∠F AB =∠FCB ,∴∠FBC =∠FCB ,∴FB =FC .(2)证明:∵∠F AB =∠FCB =∠FBC ,∠AFB =∠BFD ,∴△FBA ∽△FDB ,∴FB FD =FA FB, ∴FB 2=FA ·FD .(3)∵AB 是圆的直径,∴∠ACB =90°.∵∠EAC =120°,∴∠DAC =12∠EAC =60°,∠BAC =60°. ∴∠D =30°.∵BC =6 cm ,∴AC =23cm ,∴AD =2AC =43cm.。

【高考精品复习】选修4-1 几何证明选讲 第3讲 圆中的比例线段与圆内接四边形

【高考精品复习】选修4-1 几何证明选讲 第3讲 圆中的比例线段与圆内接四边形

第3讲 圆中的比例线段与圆内接四边形【高考会这样考】1.考查相交弦定理,切割线定理的应用. 2.考查圆内接四边形的判定与性质定理. 【复习指导】本讲复习时,紧紧抓住相交弦定理、切割线定理以及圆内接四边形的判定与性质定理,重点以基本知识、基本方法为主,通过典型的题组训练,掌握解决问题的基本技能.基础梳理1.圆中的比例线段 定理名称基本图形条件结论 应用 相交弦定理弦AB 、CD 相交于圆内点P(1)P A ·PB =PC ·PD ; (2)△ACP ∽ △DBP(1)在P A 、PB 、PC 、PD 四线段中知三求一; (2)求弦长及角 切割线定理P A 切⊙O 于A ,PBC 是⊙O 的割线(1)P A 2=PB ·PC ; (2)△P AB ∽△PCA (1)已知P A 、PB 、PC 知二可求一; (2)求解AB 、AC 割线定理P AB 、PCD 是⊙O 的割线 (1)P A ·PB =PC ·PD ;(2)△P AC ∽△PDB(1)求线段P A 、PB 、PC 、PD 及AB 、CD ; (2)应用相似求AC 、BD2.圆内接四边形(1)圆内接四边形性质定理:圆内接四边形的对角互补. (2)圆内接四边形判定定理:①如果四边形的对角互补,则此四边形内接于圆;②若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.双基自测1.(2011·天津)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.解析∵ABCD为圆内接四边形,∴∠PBC=∠ADP,又∠P=∠P,∴△BCP∽△DAP,∴BCAD=PBPD=13.答案1 32.(2011·广州调研)如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.解析连接BD,由题意知,∠ADB=∠MAB=35°,∠BDC=90°,故∠D=∠ADB+∠BDC=125°.答案125°3.(2011·深圳调研)如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=________.解析如图,连接AE,∵AB是⊙O的直径,∴AE ⊥BE ,又E 是 BD 的中点, ∴∠BAE =∠EAC , 从而E 是BC 的中点, ∴BE =EC =6,AB =AC =18,由CD ·CA =CE ·CB ,得(18-AD )×18=6×12,故AD =14. 答案 144.(2011·广州模拟)如图,过点D 作圆的切线切于B 点,作割线交圆于A ,C 两点,其中BD =3,AD =4,AB =2,则BC =________.解析 ∵∠A =∠DBC ,∠D =∠D , ∴△ABD ∽△BCD ,AD BD =AB BC ,解得BC =32. 答案 325.如图所示,已知⊙O 的两条弦AB 、CD 相交于AB 的中点E ,且AB =4,DE =CE +3,则CD 的长为________.解析 由相交弦定理知, EA ·EB =EC ·ED .(*)又∵E 为AB 中点,AB =4,DE =CE +3, ∴(*)式可化为22=EC (CE +3)=CE 2+3CE , ∴CE =-4(舍去)或CE =1.∴CD =DE +CE =2CE +3=2+3=5. 答案5考向一相交弦定理的应用【例1】►(2011·广东实验中学质检)如图,半径为2的⊙O中,∠AOB=90°,D 为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为________.[审题视点] 由勾股定理求AD,再由相交弦定理求DE.解析延长DO交圆O于另一点F,易知OD=1,则AD=AO2+OD2= 5.由相交弦定理得,AD·DE=BD·DF,即5·DE=1×3,DE=35 5.答案35 5相交弦定理主要用于与圆有关的比例线段的计算与证明,解题时要与相似三角形及圆周角、弦切角等相关知识综合应用.【训练1】(2011·广东)如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3,∠OAP=30°,则CP=________.解析依题AP=PB=32a,由PD·CP=AP·PB,得CP=AP2PD=98a.答案98a考向二切割线定理的应用【例2】►如图所示,P A为⊙O的切线,A为切点,PBC是过点O的割线,P A=10,PB=5,∠BAC的平分线与BC和⊙O分别交于点D和E,求AD·AE的值.[审题视点] 由切割线定理知P A2=PB·PC,可得直径BC的长,要求AD·AE,由△ACE∽△ADB,得AD·AE=CA·BA,只要求出CA,BA的长即可.解如图所示,连接CE,∵P A是⊙O的切线,PBC是⊙O的割线,∴P A2=PB·PC.又P A=10,PB=5,∴PC=20,BC=15.∵P A切⊙O于A,∴∠P AB=∠ACP.又∠P为公共角,∴△P AB∽△PCA.∴ABCA=P APC=1020=12.∵BC为⊙O的直径,∴∠CAB=90°.∴AC2+AB2=BC2=225.∴AC=65,AB=3 5. 又∠ABC=∠E,∠CAE=∠EAB,∴△ACE∽△ADB,∴ABAE=ADAC.∴AD·AE=AB·AC=35×65=90.在圆中通过连接圆上的两点、作圆的切线等可以创造使用圆周角定理、圆心角定理、弦切角定理的条件,这是在圆的问题上解决角之间关系的重要技巧.【训练2】如图,⊙O与⊙O′外切于P,两圆公切线AC,分别切⊙O、⊙O′于A、C两点,AB是⊙O的直径,BE是⊙O′的切线,E为切点,连AP、PC、BC.求证:AP·BC=BE·AC.证明由题意可知∠APC=90°,连BP,则∠APB=90°,∴B、P、C在同一直线上,即P点在BC上,由于AB⊥AC,易证Rt△APB∽Rt△CAB.∴ABCB=PBAB,即AB2=BP·BC,又由切割线定理,得BE2=BP·BC,∴AB=BE,又Rt△APB∽Rt△CAB,∴ABCB=APCA,即AP·BC=AB·AC,∴AP·BC=BE·AC.考向三圆内接四边形性质的应用【例3】►(2011·辽宁三校联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.[审题视点] (1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.(1)四边形ABCD的对角线交于点P,若P A·PC=PB·PD,则它的四个顶点共圆.(2)四边形ABCD的一组对边AB、DC的延长线交于点P,若P A·PB=PC·PD,则它的四个顶点共圆.以上两个命题的逆命题也成立.该组性质用于处理四边形与圆的关系问题时比较有效.【训练3】如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH 2=CE ·GF .证明 (1)如图,连接BC .∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AG ⊥FG ,∴∠AGE =90°. 又∠EAG =∠BAC , ∴∠ABC =∠AEG .又∠FDC =∠ABC , ∴∠FDC =∠AEG . ∴∠FDC +∠CEF =180°. ∴C ,D ,F ,E 四点共圆.(2)∵GH 为⊙O 的切线,GCD 为割线, ∴GH 2=GC ·GD .由C ,D ,F ,E 四点共圆,得∠GCE =∠AFE ,∠GEC =∠GDF . ∴△GCE ∽△GFD . ∴GC GF =GE GD, 即GC ·GD =GE ·GF .∴CH 2=GE ·GF .如何求解高考中几何证明选讲问题从近两年的新课标高考试题可以看出,高考对切割线定理的应用及四点共圆问题重点考查,题型为填空题或解答题.【示例】► (本题满分10分)(2011·新课标全国)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.第(1)问连DE ,证明△ADE ∽△ACB ,即证∠ADE =∠ACB ,根据对角互补判定四点C ,B ,D ,E 共圆;第(2)问先求AD 、AB 的长,再确定C ,B ,D ,E 四点所在圆的圆心,进一步求半径.[解答示范] (1)连接DE ,根据题意,在△ADE 和△ACB 中,AD ·AB =mn =AE ·AC ,即AD AC =AEAB .又∠DAE =∠CAB , 从而△ADE ∽△ACB .(3分) 因此∠ADE =∠ACB .所以C ,B ,D ,E 四点共圆.(4分)(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.(6分)取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .(8分)由于∠A =90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12×(12-2)=5. 故C ,B ,D ,E 四点所在圆的半径为5 2.(10分)本题主要考查平面几何证明,四点共圆,三角形相似,一元二次方程根与系数的关系.四点共圆常用的证明方法是求证四边形的一个外角等于与它不相邻的内角,当然也可以求出过其中三点的圆,然后证另一点也在这个圆上,也可以证明以两个点为端点的线段的垂直平分线与以另两个点为端点的线段的垂直平分线相交.【试一试】(2011·辽宁)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.[尝试解答] (1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EF A≌△EGB,故∠F AE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠F AB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.。

新教材高中数学第一章空间向量与立体几何4-1空间中直线平面的平行练习含解析新人教A版选择性必修第一册

新教材高中数学第一章空间向量与立体几何4-1空间中直线平面的平行练习含解析新人教A版选择性必修第一册

第2课时 空间中直线、平面的平行学习目标 熟练掌握用方向向量、法向量证明线线、线面、面面间的平行关系.知识点一 线线平行的向量表示 设u 1,u 2分别是直线l 1,l 2的方向向量,则l 1∥l 2⇔u 1∥u 2⇔∃λ∈R ,使得u 1=λu 2.知识点二 线面平行的向量表示设u 是直线 l 的方向向量,n 是平面α的法向量,l ⊄α,则l ∥α⇔u ⊥n ⇔u ·n =0.知识点三 面面平行的向量表示 设n 1 ,n 2 分别是平面α,β的法向量,则α∥β⇔n 1∥n 2⇔∃λ∈R ,使得n 1=λn 2 .思考 怎么利用向量证明或判定直线和平面的位置关系? 答案 证明或判定直线和平面的位置关系有两类思路(1)转化为线线关系,然后利用两个向量的关系进行判定;(2)利用直线的方向向量和平面的法向量进行判定.1.已知直线l 的方向向量为a =(-1,2,0),平面α的法向量为n =(2,1,-1),则( ) A .l ⊥α B .l ∥α C .l ⊂α D .l ∥α或l ⊂α答案 D2.若平面α∥β,且平面α的一个法向量为n =⎝ ⎛⎭⎪⎫-2,1,12,则平面β的法向量可以是( ) A.⎝⎛⎭⎪⎫-1,12,14B .(2,-1,0)C .(1,2,0) D.⎝ ⎛⎭⎪⎫12,1,2答案 A3.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-4,-8,4),则平面α,β的位置是________. 答案 α∥β解析 ∵u =-14v ,∴α∥β.一、证明线线平行例1 在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2,点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥RS .证明 方法一 如图所示,建立空间直角坐标系,根据题意得M ⎝ ⎛⎭⎪⎫3,0,43,N (0,2,2),R (3,2,0),S ⎝ ⎛⎭⎪⎫0,4,23. 则MN →,RS →分别为MN ,RS 的方向向量, 所以MN →=⎝ ⎛⎭⎪⎫-3,2,23,RS →=⎝ ⎛⎭⎪⎫-3,2,23,所以MN →=RS →,所以MN →∥RS →,因为M ∉RS , 所以MN ∥RS .方法二 设AB →=a ,AD →=b ,AA 1—→=c , 则MN →=MB 1—→+B 1A 1—→+A 1N —→=13c -a +12b ,RS →=RC →+CD →+DS →=12b -a +13c .所以MN →=RS →,所以MN →∥RS →. 又R ∉MN ,所以MN ∥RS .反思感悟 利用向量证明线线平行的思路证明线线平行只需证明两条直线的方向向量共线即可.跟踪训练1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.证明 以点D 为坐标原点,分别以DA →,DC →,DD 1—→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝ ⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1—→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1—→=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫0,1,12,∴AE →=FC 1—→,EC 1—→=AF →, ∴AE →∥FC 1—→,EC 1—→∥AF →, 又∵F ∉AE ,F ∉EC 1, ∴AE ∥FC 1,EC 1∥AF ,∴四边形AEC 1F 是平行四边形. 二、证明线面平行例2 在四棱锥P -ABCD 中,四边形ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点.证明:PA ∥平面EDB .证明 如图所示,建立空间直角坐标系,D 是坐标原点,设PD =DC =a . 连接AC ,交BD 于点G ,连接EG ,依题意得D (0,0,0),A (a ,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫0,a 2,a 2.方法一 设平面BDE 的法向量为n =(x ,y ,z ), 又DE →=⎝ ⎛⎭⎪⎫0,a 2,a 2,EB →=⎝⎛⎭⎪⎫a ,a2,-a 2,则有⎩⎪⎨⎪⎧n ·DE →=0,n ·EB →=0,即⎩⎪⎨⎪⎧a 2y +z =0,a ⎝ ⎛⎭⎪⎫x +y 2-z 2=0,即⎩⎪⎨⎪⎧y +z =0,2x +y -z =0.令z =1,则⎩⎪⎨⎪⎧x =1,y =-1,所以n =(1,-1,1),又PA →=(a ,0,-a ),所以n ·PA →=(1,-1,1)·(a ,0,-a )=a -a =0. 所以n ⊥PA →.又PA ⊄平面EDB ,所以PA ∥平面EDB . 方法二 因为四边形ABCD 是正方形, 所以G 是此正方形的中心,故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,所以EG →=⎝ ⎛⎭⎪⎫a 2,0,-a 2. 又PA →=(a ,0,-a ),所以PA →=2EG →,这表明PA ∥EG . 而EG ⊂平面EDB ,且PA ⊄平面EDB , 所以PA ∥平面EDB .方法三 假设存在实数λ,μ使得PA →=λDE →+μEB →,即(a ,0,-a )=λ⎝ ⎛⎭⎪⎫0,a 2,a 2+μ⎝ ⎛⎭⎪⎫a ,a 2,-a2,则有⎩⎪⎨⎪⎧a =μa ,0=λ·a 2+μ·a 2=a 2λ+μ,-a =λ·a 2-μ·a2,解得⎩⎪⎨⎪⎧λ=-1,μ=1.所以PA →=-DE →+EB →,又PA ⊄平面EDB , 所以PA ∥平面EDB .反思感悟 证明线面平行问题的方法(1)证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内; (2)证明直线的方向向量可以用平面内两个不共线向量表示且直线不在平面内; (3)证明直线的方向向量与平面的法向量垂直且直线不在平面内.跟踪训练2 在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .证明 ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE . 又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0), ∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2). 设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG . 三、证明面面平行例3 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点, 求证:平面ADE ∥平面B 1C 1F .证明 建立如图所示的空间直角坐标系Dxyz ,则D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1),C 1B 1—→=(2,0,0), 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1.令z 1=2,则y 1=-1,所以可取n 1=(0,-1,2). 同理,设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1—→,n 2⊥C 1B 1—→, 得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1, 所以n 2=(0,-1,2). 因为n 1=n 2,即n 1∥n 2, 所以平面ADE ∥平面B 1C 1F .反思感悟 证明面面平行问题的方法(1)利用空间向量证明面面平行,通常是证明两平面的法向量平行. (2)将面面平行转化为线线平行然后用向量共线进行证明.跟踪训练3 在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,F 是棱AB 的中点.试用向量的方法证明:平面AA 1D 1D ∥平面FCC 1. 证明 因为AB =4,BC =CD =2,F 是棱AB 的中点,所以BF =BC =CF ,所以△BCF 为正三角形.因为ABCD 为等腰梯形,AB =4,BC =CD =2,所以∠BAD =∠ABC =60°. 取AF 的中点M ,连接DM , 则DM ⊥AB ,所以DM ⊥CD .以D 为原点,DM 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系Dxyz ,则D (0,0,0),D 1(0,0,2),A (3,-1,0),F (3,1,0),C (0,2,0),C 1(0,2,2), 所以DD 1—→=(0,0,2),DA →=(3,-1,0),CF →=(3,-1,0),CC 1—→=(0,0,2), 所以DD 1—→∥CC 1—→,DA →∥CF →, 所以DD 1∥CC 1,DA ∥CF ,又DD 1∩DA =D ,CC 1∩CF =C ,DD 1,DA ⊂平面AA 1D 1D ,CC 1,CF ⊂平面FCC 1, 所以平面AA 1D 1D ∥平面FCC 1.面面平行之探究典例 如图所示,在正方体AC 1中,O 为底面ABCD 中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO .解 如图所示,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连接BQ ,D 1Q .设正方体的棱长为1, 则O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝⎛⎭⎪⎫0,0,12,A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝ ⎛⎭⎪⎫-12,-12,12,BD 1—→=(-1,-1,1),∵BD 1—→=2OP →,∴OP →∥BD 1—→,∴OP ∥BD 1. AP →=⎝⎛⎭⎪⎫-1,0,12,BQ →=(-1,0,z ),当z =12时,AP →=BQ →,即AP ∥BQ ,又AP ∩OP =P ,BQ ∩BD 1=B ,AP ,OP ⊂平面PAO ,BQ ,BD 1⊂平面D 1BQ ,则有平面PAO ∥平面D 1BQ ,∴当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .[素养提升] (1)求点的坐标:可设出对应点的坐标,根据面面平行的判定定理转化为向量共线问题或者利用两个平面的法向量共线,进而建立与所求点的坐标有关的等式.(2)由结论推应具备的条件的逆向推理是逻辑推理中的一种基本形式,通过应用推理的方式与方法,能较好的培养学生的合乎逻辑的思维品质.1.已知向量 a =(2,4,5),b =(3,x ,y ) 分别是直线 l 1,l 2 的方向向量,若 l 1∥l 2 ,则( ) A .x =6,y =15 B .x =3,y =152C .x =3,y =15D .x =6,y =152答案 D解析 由题意得,32=x 4=y 5,∴x =6,y =152.2.如果直线l 的方向向量是a =(-2,0,1),且直线l 上有一点P 不在平面α上,平面α的法向量是b =(2,0,4),那么( ) A .l ⊥α B .l ∥α C .l ⊂α D .l 与α斜交答案 B解析 ∵直线l 的方向向量是a =(-2,0,1),平面α的法向量是b =(2,0,4), ∴a ·b =-4+0+4=0,∴直线l 在平面α内或者与平面平行,又直线l 上有一点P 不在平面α上, ∴l ∥α.3.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 答案 D解析 若l ∥α,则a ·n =0. 而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1,只有D 选项中a ·n =-3+3=0.4.设平面α,β的一个法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为____________. 答案 平行解析 ∵v =-3(1,2,-2)=-3u ,∴α∥β.5.已知直线l ∥平面ABC ,且l 的一个方向向量为a =(2,m ,1),A (0,0,1),B (1,0,0),C (0,1,0)则实数m 的值是________. 答案 -3解析 ∵l ∥平面ABC ,∴存在实数x ,y ,使a =xAB →+yAC →,AB →=(1,0,-1),AC →=(0,1,-1), ∴(2,m ,1)=x (1,0,-1)+y (0,1,-1)=(x ,y ,-x -y ), ∴⎩⎪⎨⎪⎧2=x ,m =y ,1=-x -y ,∴m =-3.1.知识清单:(1)线线平行的向量表示. (2)线面平行的向量表示. (3)面面平行的向量表示. 2.方法归纳:坐标法、转化化归.3.常见误区:通过向量和平面平行直接得到线面平行,忽略条件直线不在平面内.1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .(2,-3,-22)答案 C解析 a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.2.若平面α,β的一个法向量分别为m =⎝ ⎛⎭⎪⎫-16,13,-1,n =⎝ ⎛⎭⎪⎫12,-1,3,则( )A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合答案 D解析 因为n =-3m ,所以m ∥n ,所以α∥β或α与β重合.3.已知直线l 的方向向量是a =(3,2,1),平面α的法向量是u =(-1,2,-1),则l 与α的位置关系是( ) A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α答案 D解析 因为a ·u =-3+4-1=0,所以a ⊥u .所以l ∥α或l ⊂α.4.(多选)若直线l 的一个方向向量为d =(6,2,3),平面α的一个法向量为n =(-1,3,0),则直线l 与平面α的位置关系是( ) A .垂直B .平行C .直线l 在平面α内D .不能确定答案 BC解析 ∵d ·n =-6+2×3+0=0,∴d ⊥n ,∴直线l 与平面α的位置关系是直线l 在平面α内或平行.5.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( )A .-103B .6C .-6 D.103答案 B解析 ∵α∥β,∴α的法向量与β的法向量也互相平行. ∴24=3λ=-1-2,∴λ=6. 6.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________. 答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0, ∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量,又 α与β不重合, ∴α∥β.7.若a =⎝ ⎛⎭⎪⎫x ,2y -1,-14是平面α的一个法向量,且b =(-1,2,1),c =⎝ ⎛⎭⎪⎫3,12,-2均与平面α平行,则向量a =________. 答案 ⎝ ⎛⎭⎪⎫-952,126,-14解析 由题意,知⎩⎪⎨⎪⎧a ·b =0,a ·c =0,即⎩⎪⎨⎪⎧-x +4y -94=0,3x +y =0,解得⎩⎪⎨⎪⎧x =-952,y =2752,所以a =⎝ ⎛⎭⎪⎫-952,126,-14.8.已知α,β为两个不重合的平面,设平面α与向量a =(-1,2,-4)垂直,平面β与向量b =(-2,4,-8)垂直,则平面α与β的位置关系是________.答案 平行解析 由题意得a ,b 分别为α,β的一个法向量,又a ∥b ,∴α∥β.9.如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,E ,F 分别为A 1C 1和BC 的中点.求证:C 1F ∥平面ABE .证明 如图,以B 为坐标原点,分别以BC ,BA ,BB 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系. 设BC =a ,AB =b ,BB 1=c ,则B (0,0,0),A (0,b ,0),C 1(a ,0,c ),F ⎝ ⎛⎭⎪⎫a 2,0,0,E ⎝ ⎛⎭⎪⎫a 2,b2,c . 所以AB →=(0,-b ,0),AE →=⎝ ⎛⎭⎪⎫a2,-b 2,c .设平面ABE 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-by =0,a 2x -b2y +cz =0,令x =2,则y =0,z =-ac,即n =⎝⎛⎭⎪⎫2,0,-a c.又C 1F —→=⎝ ⎛⎭⎪⎫-a 2,0,-c ,所以 n ·C 1F —→=0,又C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .10.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是A 1C 1,A 1D 和B 1A 上任意一点.求证:平面A 1EF ∥平面B 1MC . 证明如图,建立空间直角坐标系Dxyz ,A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),A (1,0,0),D (0,0,0),C (0,1,0),则A 1C 1—→ =(-1,1,0), B 1C —→ =(-1,0,-1), DA 1—→=(1,0,1), B 1A —→=(0,-1,-1),设A 1E —→=λA 1C 1—→,A 1F —→=μA 1D —→,B 1M —→=v B 1A —→(λ,μ,v ∈R ,且均不为0). 设n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2)分别是平面A 1EF 与平面B 1MC 的法向量, 可得 ⎩⎪⎨⎪⎧ n 1·A 1E —→=0,n 1·A 1F —→=0,可得⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,x 1+z 1=0,所以可取n 1=(1,1, -1). 由⎩⎪⎨⎪⎧n 2·B 1M —→=0,n 2·B 1C —→=0,可得⎩⎪⎨⎪⎧n 2·B 1A —→=0,n 2·B 1C —→=0,即⎩⎪⎨⎪⎧-y 2-z 2=0,-x 2-z 2=0,可取n 2=(1,1,-1),所以n 1=n 2,所以n 1∥n 2, 所以平面A 1EF ∥平面B 1MC .11.如图,在正方体AC 1中,PQ 与直线A 1D 和AC 都垂直,则直线PQ 与BD 1的关系是( )A .异面直线B .平行直线C .垂直不相交D .垂直且相交 答案 B解析 设正方体的棱长为1,取D 点为坐标原点建系后,DA 1—→=(1,0,1), AC →=(-1,1,0),设PQ →=(a ,b ,c ),则⎩⎪⎨⎪⎧a +c =0,-a +b =0,取PQ →=(1,1,-1),∵BD 1—→=(0,0,1)-(1,1,0)=(-1,-1,1)=-PQ → , ∴PQ →∥BD 1—→ , ∴PQ ∥BD 1.12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝⎛⎭⎪⎫22,22,1 D.⎝⎛⎭⎪⎫24,24,1 答案 C解析 方法一 以C 为原点,建立空间直角坐标系如图所示.则C (0,0,0),D (2,0,0),B (0,2,0),E (0,0,1),A (2,2,0), DE →=(-2,0,1),BD →=(2,-2,0),设M (a ,a ,1),平面BDE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=0,n ·BD →=0,即⎩⎨⎧-2x +z =0,2x -2y =0,令z =2,则x =1,y =1,所以n =(1,1,2), 又AM →=(a -2,a -2,1), ∴AM →·n =a -2+a -2+2=0, ∴a =22,即M ⎝ ⎛⎭⎪⎫22,22,1. 方法二 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE , 所以AM ∥EO ,又O 是正方形ABCD 对角线交点, 所以M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标为⎝⎛⎭⎪⎫22,22,1. 13.(多选)如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.下列结论中正确的是( )A .A 1M ∥D 1P B. A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 1 答案 ACD解析 因为A 1M —→=A 1A —→+AM →=A 1A —→+12AB →,D 1P —→=D 1D —→+DP →=A 1A —→+12AB → ,所以A 1M —→∥D 1P —→,从而A 1M ∥D 1P ,可得ACD 正确. 又B 1Q 与D 1P 不平行,故B 不正确.14.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是________. 答案 平行解析 建立如图所示的空间直角坐标系,设正方体的棱长为2,则A (2,2,2),A 1(2,2,0),C (0,0,2),B (2,0,2), ∴M (2,1,1),N (1,1,2), ∴MN →=(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0),∵-1×0+0×1+1×0=0, ∴MN →⊥n ,∴MN ∥平面BB 1C 1C .15.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则实数x 的值为( ) A .-2 B .- 2 C. 2 D .± 2 答案 D解析 ∵直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),直线l ∥平面α,∴x 2-2=0,解得x =± 2.16.如图,四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,PA =AB =BC =12AD =1.问:在棱PD 上是否存在一点E ,使得CE ∥平面PAB ?若存在,求出E 点的位置;若不存在,请说明理由.解 分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系,如图.则P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则 PE →=(0,y ,z -1), PD →=(0,2,-1),∵PE →∥PD →,∴y 2=z -1-1,① ∵AD →=(0,2,0)是平面PAB 的法向量, CE →=(-1,y -1,z ),∴由CE ∥平面PAB ,可得CE →⊥AD →, ∴(-1,y -1,z )·(0,2,0)=2(y -1)=0, ∴y =1,代入①式得z =12.∴E 是PD 的中点,即存在点E 为PD 中点时,CE ∥平面PAB .。

2015届高考数学总复习几何证明选讲第1课时相似三角形的进一步认识教学案(新人教A版选修4-1)

2015届高考数学总复习几何证明选讲第1课时相似三角形的进一步认识教学案(新人教A版选修4-1)

选修4-1 几何证明选讲第1课时 相似三角形的进一步认识(对应学生用书(理)179~181页)1. 如图,△ABC 中, DE ∥BC, DF ∥AC ,AE ∶AC =3∶5,DE =6,求BF 的长. 解:DE BC =AE AC 6BC =35BC =10,∴ BF =10-6=4.2. 如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,求DE 与BC 的长度比.解:因为DE ∥BC ,所以DE BC =AD AB =46=23.3. 如图,在△ABC 中,DE ∥BC ,EF ∥CD.且AB =2,AD =2,求AF 的长.解:设AF =x ,则由AD DB =AE EC =AF DF ,22-2=x2-x,解得x =1.4. 如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB.连结BD 、EC ,若BD ∥EC ,求△BCD 和四边形ABCD 的面积.解:S △BCD =S △BDE =12·BE ·DF =12×1×3=32,S 四边形ABCD =S △ADE =12·AE ·DF =12×4×3=6.5. 如图,平行四边形ABCD 中,AE ∶EB =1∶2,△AEF 的面积为6,求△ADF 的面积.解:由题意可得△AEF ∽△CDF ,且相似比为1∶3,由△AEF 的面积为6,得△CDF 的面积为54.又S △ADF ∶S △CDF =1∶3,所以S △ADF =18.1. 平行截割定理(1) 平行线等分线段定理及其推论①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.②推论:经过梯形一腰的中点而平行于底边的直线平分另一腰. (2) 平行截割定理及其推论①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例. ②推论:平行于三角形一边的直线截其他两边,截得的三角形的边与原三角形的对应边成比例.(3) 三角形角平分线的性质三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比. (4) 梯形的中位线定理梯形的中位线平行于两底,并且等于两底和的一半. 2. 相似三角形(1) 相似三角形的判定 ①判定定理a. 两角对应相等的两个三角形相似.b. 两边对应成比例且夹角相等的两个三角形相似.c. 三边对应成比例的两个三角形相似.②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. ③直角三角形相似的特殊判定.斜边与一条直角边对应成比例的两个直角三角形相似. (2) 相似三角形的性质相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.(3) 直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.[备课札记]题型1平行线分线段成比例问题例1如图,在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB边的中点,求证:ED=EC.证明:如图,过E点作EF∥BC交DC于点F.在梯形ABCD中,AD∥BC,∴AD∥EF∥BC.∵E是AB的中点,∴F是DC的中点.∵∠ADC=90°,∴∠DFE=90°.∴EF是DC的垂直平分线,∴ED=EC.备选变式(教师专享)如图,在△ABC中,作直线DN平行于中线AM,设这条直线交边AB于点D,交边CA的延长线于点E,交边BC于点N.求证:AD∶AB=AE∶AC.证明:∵ AM ∥EN ,∴ AD ∶AB =NM ∶MB ,NM ∶MC =AE ∶AC. ∵ MB =MC ,∴ AD ∶AB =AE ∶AC. 题型2 三角形相似的证明与应用例2 已知:如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作AC 的平行线DE ,交BA 的延长线于点E.求证:(1) △ABC ≌△DCB ; (2) DE·DC =AE·BD.证明:(1) ∵ 四边形ABCD 是等腰梯形,∴ AC =DB. ∵ AB =DC ,BC =CB ,∴ △ABC ≌△BCD. (2) ∵ △ABC ≌△BCD ,∴ ∠ACB =∠DBC ,∠ABC =∠DCB ,∵ AD ∥BC ,∴ ∠DAC =∠ACB ,∠EAD =∠ABC. ∵ ED ∥AC ,∴ ∠EDA =∠DAC , ∴ ∠EDA =∠DBC ,∠EAD =∠DCB. ∴ △ADE ∽△CBD.∴ DE ∶BD =AE ∶CD , ∴ DE ·DC =AE·BD. 变式训练如图,在矩形ABCD 中,AB>12·AD ,E 为AD 的中点,连结EC ,作EF ⊥EC ,且EF交AB 于F ,连结FC.设ABBC=k ,是否存在实数k ,使△AEF 、△ECF 、△DCE 与△BCF 都相似?若存在,给出证明;若不存在,请说明理由.解:假设存在实数k 的值,满足题设. ①先证明△AEF ∽△DCE ∽△ECF. 因为EF ⊥EC ,所以∠AEF =90°-∠DEC =∠DCE. 而∠A =∠D =90°,故△AEF ∽△DCE.故得CE EF =DE AF .又DE =EA ,所以CE EF =AE AF.又∠CEF =∠EAF =90°, 所以△AEF ∽△ECF.②再证明可以取到实数k 的值,使△AEF ∽△BCF ,由于∠AFE +∠BFC ≠90°,故不可能有∠AFE =∠BFC ,因此要使△AEF ∽△BCF ,应有∠AFE =∠BFC , 此时,有AE AF =BC BF ,又AE =12BC ,故得AF =12BF =13AB.由△AEF ∽△DCE ,可知AE AF =CDDE ,因此,⎝⎛⎭⎫12BC 2=13AB 2, 所以AB 2BC 2=34,求得k =AB BC =32.可以验证,当k =32时,这四个三角形都是有一个锐角等于60°的直角三角形,故它们都相似.题型3 射影定理的应用例3 已知:如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F.求证:AE·BF·AB =CD 3.证明:∵ ∠ACB =90°,CD ⊥AB , ∴ CD 2=AD ·BD ,故CD 4=AD 2·BD 2. 又在Rt △ADC 中,DE ⊥AC , Rt △BDC 中,DF ⊥BC , ∴ AD 2=AE·AC ,BD 2=BF·BC. ∴ CD 4=AE·BF·AC·BC. ∵ AC ·BC =AB·CD , ∴ CD 4=AE·BF·AB ·CD ,即AE·BF·AB =CD 3. 备选变式(教师专享)如图,在梯形ABCD 中,AD ∥BC ,AC ⊥BD ,垂足为E ,∠ABC =45°,过E 作AD 的垂线交AD 于F ,交BC 于G ,过E 作AD 的平行线交AB 于H.求证:FG 2=AF·DF +BG·CG +AH·BH.证明:因为AC ⊥BD ,故△AED 、△BEC 都是直角三角形. 又EF ⊥AD ,EG ⊥BC , 由射影定理可知AF·DF =EF 2, BG ·CG =EG 2.又FG 2=(FE +EG)2=FE 2+EG 2+2FE·EG =AF·DF +BG·CG +2FE·EG ,∠ABC =45°,如图,过点H 、A 分别作直线HM 、AN 与BC 垂直,易知,AH =2FE ,BH =2EG ,故AH·BH=2EF·EG.所以FG2=AF·DF+BG·CG+2FE·EG=AF·DF+BG·CG+AH·BH.1. 如图,在ABCD中,BC=24,E、F为BD的三等分点,求BM-DN的值.解:∵ E、F为BD的三等分点,四边形为平行四边形,∴M为BC的中点.连CF交AD于P,则P为AD的中点,由△BCF∽△DPF及M为BC中点知,N为DP的中点,∴BM-DN=12-6=6.2. 如图,在四边形ABCD中,△ABC≌△BAD.求证:AB∥CD.证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CAB=∠CDB.再由△ABC≌△BAD得∠CAB=∠DBA.因此∠DBA=∠CDB,所以AB∥CD.3. 如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP∶PF=1∶2,AD=7 cm,求BC的长.解:EF是梯形中位线,得EF∥AD∥BC,∴PEAD=PE7=BEAB=12,PFBC=FDCD=12.∵PE∶PF=1∶2,∴BC=2PF=14cm.4. 如图,已知A、B、C三点的坐标分别为(0,1)、(-1,0)、(1,0),P是线段AC上一点,BP交AO于点D,设三角形ADP的面积为S,点P的坐标为(x,y),求S关于x的函数表达式.解:如图,作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则PE =x ,PF =y. ∵ OA =OB =OC =1,∴ ∠ACO =∠FPC =45°, ∴ PF =FC =y ,∴ OF =OC -FC =1-y , ∴ x =1-y ,即y =1-x , ∴ BF =2-y =1+x.∵ OE ∥FP ,∴ △BOD ∽△BFP , ∴OD PF =BO BF ,即OD y =11+x, ∴ OD =y 1+x =1-x 1+x,∴ AD =1-OD =1-1-x 1+x =2x1+x ,S △ADP =12AD ·PE =12·2x 1+x ×x =x 21+x ,∴ S =x 21+x(0<x ≤1).1. 在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,求|PA|2+|PB|2|PC|2.解:不失一般性,取特殊的等腰直角三角形,不妨令|AC|=|BC|=4,则|AB|=42,|CD|=12|AB|=22,|PC|=|PD|=12|CD|=2,|PA|=|PB|=|AD|2+|PD|2=(22)2+(2)2=10,所以|PA|2+|PB|2|PC|2=10+102=10.2. 如图,在ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD.(1) 求证:△ABF ∽△CEB ;(2) 若△DEF 的面积为2,求ABCD 的面积. (1) 证明:∵ 四边形ABCD 是平行四边形, ∴ ∠A =∠C ,AB ∥CD , ∴ ∠ABF =∠CEB ,∴ △ABF ∽△CEB. (2) 24.3. 如图,四边形ABCD 是正方形,E 是AD 上一点,且AE =14AD ,N 是AB 的中点,NF ⊥CE 于F ,求证:FN 2=EF·FC.证明:连结NC 、NE ,设正方形的边长为a , ∵ AE =14a ,AN =12a ,∴ NE =54a.∵ BN =12a ,BC =a ,∴ NC =52a.∵ DE =34a ,DC =a ,∴ EC =54a.又NE 2=516a 2,NC 2=54a 2,EC 2=2516a 2,且NE 2+NC 2=EC 2,∴ EN ⊥NC.∵ NF ⊥CE ,∴ FN 2=EF·FC.4. 在梯形ABCD 中,点E 、F 分别在腰AB 、CD 上,EF ∥AD ,AE ∶EB =m ∶n.求证:(m +n)EF =mBC +nAD.你能由此推导出梯形的中位线公式吗?解:如图,连结AC ,交EF 于点G. ∵ AD ∥EF ∥BC , ∴ DF FC =AE EB =m n, ∴AE AB =m m +n ,CF CD =n m +n. 又EG ∥BC ,FG ∥AD , ∴AE AB =EG BC =m m +n ,CF CD =GF AD =n m +n, ∴ EG =m m +n ·BC ,GF =nm +n ·AD.又EF =EG +GF ,∴ (m +n)EF =mBC +nAD.∴ 当m =n =1时,EF =12(BC +AD),即表示梯形的中位线.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a b =cd(或a ∶b =c ∶d)那么这四条线段叫做成比例线段,简称比例线段.注意:(1) 在求线段比时,线段单位要统一,单位不统一应先化成统一单位. (2) 当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(3) 比例线段是有顺序的,如果说a 是b ,c ,d 的第四比例项,那么应得比例式为:bc =d a.请使用课时训练(A )第1课时(见活页).[备课札记]。

新课标人教A版数学选讲4-1几何证明选讲一

新课标人教A版数学选讲4-1几何证明选讲一

2012版数学一轮精品复习学案:选修系列第三部分几何证明选讲【高考目标导航】一、相似三角形的判定及有关性质1.考纲点击(1)了解平行线分线段成比例定理。

(2)会证明并应用直角三角形射影定理。

2.热点提示(1)利用平行线等分线段定理和平行级分线段成比例定理进行相关推理和计算。

(2)相似三角形的判定及有关性质,直角三角形的射影定理的应用。

二、直线与圆的位置关系1.考纲点击(1)会证明并应用圆周定理、圆的切线的判定定理及性质定理。

(2)会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。

2.热点提示(1)应用圆心角、圆周角、弦切角定理说明角之间的关系。

(2)应用圆内接四边形的性质进行推理。

(3)利用圆的切线的性质和判定进行推理和证明。

(4)利用圆中的比例线段进行计算和推理。

【考纲知识梳理】一、相似三角形的判定及有关性质1.平行线等分线段定理及其推论(1)定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

(2)推论:①经过三角形一边的中点与另一边平行的直线必平分第三边。

②经过梯形一腰的中点,且与底边平行的直线平分另一腰。

2.平行线分线段成比例定理及推论(1)定理:三条平行线截两条直线,所得的对应线段成比例。

(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

如图,若123////l l l ,则有:,,.AD AE AD AE DB ECAB AC DB EC AB AC=== 注:把推论中的题设和结论交换之后,命题仍然成立。

3.相似三角形的判定及性质 (1)相似三角形的定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数)。

(2)相似三角形的判定①预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

如图,若EF//BC ,则⊿AEF ∽⊿ABC 。

【师说系列】2021年高考数学三轮专题分项模拟 选修 系列选考质量检测试题 文(含解析)(1)

【师说系列】2021年高考数学三轮专题分项模拟 选修 系列选考质量检测试题 文(含解析)(1)

[选修4-1:几何证明选讲]一、填空题1.(2021·广东卷)如图,在矩形中ABCD 中,AB =3,BC =3,BE ⊥AC ,垂足为E ,那么ED =__________.解析:在Rt △ABC 中,AB =3,BC =3, ∴AC =32+32=23.∵AB2=AE·AC, ∴AE =3223=32.过E 作EF ⊥AD ,得:AEAC =EFCD. ∴3223=EF 3,∴EF =34, 又∵EF ∥CD ,∴AFAD =AEAC,∴AF 3=3223,∴AF =34. ∴FD =3-34=94.在△EFD 中,DE =EF 2+DF 2=⎝ ⎛⎭⎪⎪⎫342+⎝ ⎛⎭⎪⎫942=844=212. 答案:2122.(2021·陕西卷)如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A =∠C ,PD =2DA =2,那么PE =__________. 解析:如图,∵PE ∥BC , ∴∠PED =∠C , 又∵∠A =∠C ,∴∠PED =∠A , 又∵∠P 是公共角. ∴△PDE ∽△PEA.∴PEPA =PDPE ,∴PE2=PA·PD=3×2=6. ∴PE = 6. 答案:63.(2021·天津卷)如图,在圆内接梯形ABCD 中,AB ∥DC ,过点A 作圆的切线与CB 的延长线交于点E.假设AB =AD =5,BE =4,那么弦BD 的长为__________. 解析:∵AB ∥CD ,∴∠ABE =∠BCD ,∠2=∠3, 又∵∠ABE =∠ADC ,∠1=∠2, ∴∠ADC =∠BCD , ∴BC =AD =5, 又AE 为切线,∴AE2=EB·EC=4×9=36,∴AE =6. 又∠BAE =∠1,∠1=∠2, ∴∠BAE =∠3,又∠DCB =∠ABE , ∴△DCB ∽△ABE.∴DB AE =BC BE ,∴DB =6×54=152. 答案:152二、解答题4.(2021·新课标全国卷Ⅰ)如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D. (1)证明:DB =DC ; (2)设圆的半径为1,BC =3,延长CE 交AB 于点F ,求△BCF 外接圆的半径.解析:(1)连接DE ,交BC 为G ,由弦切角定理得,∠ABE =∠BCE ,BE =CE ,又因为DB ⊥BE ,因此DE 为直径,由勾股定理得DB =DC ,(2)由(1),∠CDE =∠DBE ,DB =DC ,故DG 是BC 的中垂线,故BG =32,圆心为O ,连接BO ,那么∠BOG=60°,∠ABE =∠BCE =∠CBE =30°,因此CF ⊥BF ,故外接圆半径为32.5.(2021·新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 别离为弦AB 与弦AC 上的点,且BC·AE=DC·AF,B ,E ,F ,C 四点共圆. (1)证明:CA 是△ABC 外接圆的直径;(2)假设DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值.解析:(1)因为CD 为△ABC 外接圆的切线,因此∠DCB =∠A ,由题设知BC FA =DCEA ,故△CDB ∽△AEF ,因此∠DBC=∠EFA.因为B ,E ,F ,C 四点共圆,因此∠CFE =∠DBC ,故∠EFA =∠CFE =90°,因此∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)连结CF ,因为∠CBE =90°,因此过B ,E ,F ,C 四点的圆的直径为CE ,由DB =BE ,有CE =DC ,又BC2=DB·BA=2DB2,因此CA2=4DB2+BC2=6DB2.而DC2=DB·DA=3DB2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.6.(2021·辽宁卷)如图,AB 为⊙O 直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE.证明: (1)∠FEB =∠CEB ; (2)EF2=AD·BC.证明:(1)由直线CD 与⊙O 相切,得∠CEB =∠EAB. 由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2;又EF ⊥AB ,得∠FEB +∠EBF =π2,从而∠FEB =∠EAB.故∠FEB =∠CEB.(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边, 得Rt △BCE ≌Rt △BFE ,因此BC =BF , 类似可证:Rt △ADE ≌Rt △AFE ,得AD =AF. 又在Rt △AEB 中,EF ⊥AB ,故EF2=AF·BF, 因此EF2=AD·BC.[选修4-4:坐标系与参数方程] 一、填空题1.(2021·广东卷)已知曲线C 的极坐标方程ρ=2cosθ,以极点为原点,极轴为x 轴的正半轴成立直角坐标系,那么曲线C 的参数方程为__________.解析:将极坐标化为直角坐标得:ρ2=2ρ·cosθ. ∴x2+y2=2x ,即(x -1)2+y2=1. 令x -1=cosθ,y =sinθ.得参数方程为:⎩⎪⎨⎪⎧x =1+cosθ,y =sinθ.答案:⎩⎪⎨⎪⎧x =1+cosθ,y =sinθ.2.(2021·湖南卷)在平面直角坐标系xOy 中,假设直线l1:⎩⎪⎨⎪⎧ x =2s +1,y =s (s 为参数)和直线l2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t为参数)平行,那么常数a 的值为__________.解析:利用消参法化l1,l2的方程为一样形式是:x -2y -2=0,2x -ay -a =0,由l1∥l2可得-a -(-2)×2=0,解得a =4. 答案:43.(2021·陕西卷)圆锥曲线⎩⎪⎨⎪⎧x =t2,y =2t ,(t 为参数)的核心坐标是__________.解析:化参数方程⎩⎪⎨⎪⎧x =t2,y =2t 为一般方程为y2=4x ,∴核心坐标为(1,0). 答案:(1,0)4.直线⎩⎪⎨⎪⎧ x =2+t y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cosαy =3sinα(α为参数)的交点个数为__________.解析:将直线化为一样方程为x +y -1=0,曲线转化为一样方程为x2+y2=9,圆心(0,0)到直线的距离d =12=22<r =3,故直线与曲线的交点个数为2.答案:25.在直角坐标系xOy 中,已知曲线C1:⎩⎪⎨⎪⎧ x =t +1y =1-2t (t 为参数)与曲线C2:⎩⎪⎨⎪⎧x =asinθy =3cosθ(θ为参数,a >0)有一个公共点在x 轴上,那么a =__________.解析:曲线C1:y =3-2x 与x 轴的交点为⎝ ⎛⎭⎪⎫32,0,此点也在曲线C2:x2a2+y29=1上,代入可得a =32.答案:326.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt2y =2pt (t 为参数),其中p >0,核心为F ,准线为l.过抛物线上一点M 作l 的垂线,垂足为E.假设|EF|=|MF|.点M 的横坐标为3,那么p =__________.解析:消参得抛物线方程为y2=2px , ∵|EF|=|MF|=|ME|,∴△MEF 为正三角形,那么|EM|=2|DF|, 即3+p2=2p ,得p =2.答案:27.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1y =t -12,(t 为参数)相交于A ,B 两点,那么线段AB 的中点的直角坐标为__________. 解析:曲线⎩⎪⎨⎪⎧x =t +1,y =t -12化为直角坐标方程是y =(x -2)2,射线θ=π4化为直角坐标方程是y =x(x≥0).联立⎩⎪⎨⎪⎧y =x -22,y =x x≥0,消去y 得x2-5x +4=0,解得x1=1,x2=4.因此y1=1,y2=4.故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫x1+x22,y1+y22,即⎝ ⎛⎭⎪⎫52,52. 答案:⎝ ⎛⎭⎪⎫52,528.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C1与C2的参数方程别离为⎩⎪⎨⎪⎧x =ty =t(t 为参数)和⎩⎪⎨⎪⎧x =2cosθy =2sinθ(θ为参数),那么曲线C1与C2的交点坐标为__________.解析:C1与C2的一般方程别离为:y =x 和x2+y2=2,联立方程解得⎩⎪⎨⎪⎧x =1,y =1,∴其交点为(1,1).答案:(1,1)二、解答题9.(2021·新课标全国卷Ⅰ)已知曲线C1的参数方程为⎩⎪⎨⎪⎧x =4+5cost ,y =5+5sint ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ=2sinθ. (1)把C1的参数方程化为极坐标方程; (2)求C1与C2交点的极坐标(ρ≥0,0≤θ≤2π).解析:(1)因为⎩⎪⎨⎪⎧x =4+5cost ,y =5+5sint ,消去参数,得(x -4)2+(y -5)2=25即x2+y2-8x -10y +16=0,故C1极坐标方程为ρ2-8ρcosθ-10ρsinθ+16=0. (2)C2的一般方程为x2+y2-2y =0,联立C1,C2得方程,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2,因此交点的极坐标为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.10.(2021·新课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数)上,对应参数别离为t =α与l =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判定M 的轨迹是不是过坐标原点.解析:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cosα,sinα+sin2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cosα+cos2α,y =sinα+sinα,(α为参数,0<α<2π). (2)M 点到坐标原点的距离 d =x2+y2=2+2cosα(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.11.(2021·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴成立极坐标系,圆C1,直线C2的极坐标方程别离为ρ=4sinθ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C1与C2交点的极坐标;(2)设P 为C1的圆心,Q 为C1与C2交点连线的中点,已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t3+a ,y =b2t3+1(t ∈R 为参数),求a ,b 的值.解析:(1)圆C1的直角坐标方程为x2+(y -2)2=4, 直线C2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x2+y -22=4,x +y -4=0.得⎩⎪⎨⎪⎧x1=0,y1=4.⎩⎪⎨⎪⎧x2=2,y2=2.因此C1与C2交点的极坐标别离为⎝ ⎛⎭⎪⎫4,π2,⎝⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标别离为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1,因此⎩⎪⎨⎪⎧b2=1,-ab2+1=2,解得a =-1,b =2.12.在直角坐标系xOy 中,圆C1:x2+y2=4,圆C2:(x -2)2+y2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,别离写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(2)求圆C1与C2的公共弦的参数方程. 解析:(1)圆C1的极坐标方程为ρ=2, 圆C2的极坐标方程为ρ=4cosθ.解⎩⎪⎨⎪⎧ρ=2ρ=4cosθ得ρ=2,θ=±π3,故圆C1与圆C2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.(2)方式一:由⎩⎪⎨⎪⎧x =ρcosθ,y =ρsinθ,得圆C1与C2交点的直线坐标别离为(1,3),(1,-3).故圆C1与C2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t≤ 3.⎝⎛⎭⎪⎪⎫或参数方程写成⎩⎪⎨⎪⎧x =1,y =y ,-3≤y≤3 方式二:将x =1代入⎩⎪⎨⎪⎧x =ρcosθ,y =ρsinθ,得ρcosθ=1,从而ρ=1cosθ. 于是圆C1与C2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tanθ,-π3≤θ≤π3. 13.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴成立极坐标系.已知直线l 上两点M ,N的极坐标别离为(2,0),⎝ ⎛⎭⎪⎪⎫233,π2,圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cosθy =-3+2sinθ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判定直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标别离为(2,0),⎝ ⎛⎭⎪⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x.(2)因为直线l 上两点M ,N 的平面直角坐标别离为(2,0),⎝ ⎛⎭⎪⎪⎫0,233,因此直线l 的平面直角坐标方程为3x +3y -23=0.又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交. 14.已知曲线C1的参数方程是⎩⎪⎨⎪⎧x =2cosφy =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD 的极点都在C2上,且A ,B ,C ,D 依逆时针顺序排列,点A的极坐标为⎝ ⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围. 解析:(1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2,C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A(1,3),B(-3,1),C(-1,-3),D(3,1).(2)设P(2cosφ,3sinφ),令S =|PA|2+|PB|2+|PC|2+|PD|2,那么S =16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,因此S 的取值范围是[32,52].[选修4-5:不等式选讲]一、填空题1.(2021·陕西卷)设a ,b ∈R ,|a -b|>2,那么关于实数x 的不等式|x -a|+|x -b|>2的解集是__________. 解析:由数轴上两点间距离的几何意义,可知|x -a|+|x -b|≥|a-b|>2.∴不等式|x -a|+|x -b|>2的解集为(-∞,+∞).答案:(-∞,+∞)2.假设存在实数x 使|x -a|+|x -1|≤3成立,那么实数a 的取值范围是______________.解析:存在实数x 使不等式|x -a|+|x -1|≤3成立,只要|x -a|+|x -1|的最小值小于等于3即可,由于|x -a|+|x -1|≥|(x-a)-(x -1)|=|a -1|,故|a -1|≤3即可,解得-2≤a≤4.答案:-2≤a≤43.不等式|2x +1|-2|x -1|>0的解集为__________.解析:令f(x)=|2x +1|-2|x -1|=⎩⎪⎨⎪⎧ -3,x≤-12,4x -1,-12<x <1,3,x≥1.f(x)=0的根为x =14,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >14 二、解答题4.(2021·新课标全国卷Ⅰ)已知函数f(x)=|2x -1|+|2x +a|,g(x)=x +3.(1)当a =-2时,求不等式f(x)<g(x)的解集; (2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f(x)≤g(x),求a 的取值范围. 解析:当a =-2时,令y =|2x -1|+|2x -2|-x -3=⎩⎪⎨⎪⎧ -5x ,x ≤12,-x -2,12≤x≤1,3x -6,x >1做出函数图象可知,当x ∈(0,2)时,y <0,故原不等式的解集为{x|0<x <2}; (2)依题意,原不等式化为1+a≤x+3,故x≥a-2对⎣⎢⎡⎭⎪⎫-a 2,12都成立,故-a 2≥a-2,故a≤43,故a 的取值范围是⎝⎛⎦⎥⎤-1,43. 5.(2021·新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1.证明:(1)ab +bc +ca≤13; (2)a2b +b2c +c2a≥1. 证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc +ca. 由题设得(a +b +c)2=1,即a2+b2+c2+2ab +2bc +2ca =1.因此3(ab +bc +ca)≤1,即ab +bc +ca≤13. (2)因为a2b +b≥2a,b2c +c≥2b,c2a+a≥2c, 故a2b +b2c +c2a +(a +b +c)≥2(a+b +c),即a2b +b2c +c2a≥a+b +c. 因此a2b +b2c +c2a≥1. 6.(2021·辽宁卷)已知函数f(x)=|x -a|,其中a >1.(1)当a =2时,求不等式f(x)=4-|x -4|的解集;(2)已知关于x 析不等式|f(2x +a)-2f(x)|≤2的解集为{x|1≤x≤2},求a 的值.解析:(1)当a =2时,f(x)+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x≤2,2,2<x <4,2x -6,x≥4.当x≤2时,由f(x)≥4-|x -4|得-2x +6≥4,解得x≤1;当2<x <4时,f(x)≥4-|x -4|无解;当x≥4时,由f(x)≥4-|x -4|得2x -6≥4,解得x≥5;因此f(x)≥4-|x -4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x +a)-2f(x),那么h(x)=⎩⎪⎨⎪⎧ -2a ,x≤0,4x -2a ,0<x <a ,2a ,x≥a.由|h(x)|≤2,解得a -22≤x≤a +12. 又已知|h(x)|≤2的解集为{x|1≤x≤2},因此⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.7.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1].(1)求m 的值;(2)假设a ,b ,c ∈R ,且1a +12b +13c=m ,求证:a +2b +3c≥9. 解析:(1)因为f(x +2)=m -|x|,f(x +2)≥0等价于|x|≤m,由|x|≤m 有解,得m≥0,且解集为{x|-m≤x≤m}.又f(x +2)≥0的解集为[-1,1],故m =1.(2)由(1)知1a +12b +13c =1,又a ,b ,c ∈R ,由柯西不等式得a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝ ⎛⎭⎪⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。

高中数学选修1-1、1-2、4-1、4-4知识点归纳

高中数学选修1-1、1-2、4-1、4-4知识点归纳
相似三角形的判定: ( 1)两角对应相等,两三角形相似; ( 2)两边对应成比例且夹角相等,两三角形相似; ( 3)三边对应成比例,两三角形相似。
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项; 两直角边分别是它们在斜边上射影与斜边的比例中项。
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。 圆心角定理:圆心角的度数等于它所对弧的度数。
选修 1- 1、 1-2 数学知识点
第一部分 简单逻辑用语
1. 原命题:“若 p ,则 q ”;逆命题: “若 q ,则 p ”; 否命题:“若 p ,则 q ”;逆否命题: “若 q ,则 p ”
2. 四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性; ( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
3. 若 p 若p
q ,则 p 是 q 的充分条件, q 是 p 的必要条件. q ,则 p 是 q 的充要条件(充分必要条件) .
集合间的包含关系:若 A B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;
若 A=B,则 A 是 B 的充要条件;
4. ⑴全称量词——“所有的” 、“任意一个”等,用“
3. 极坐标与直角坐标的互化:
2 x2 y2 , x y sin , tan
cos , y (x 0) x
3.圆 ( x a) 2 ( y b)2 r 2的参数方程可表示为
x a rcos , ( 为参数 ) .
y b rsin .
2
2
椭圆 x a2
y b2
1 (a b
0) 的参数方程可表示为
x acos , ( 为参数 ) .
nx n

4-28几何证明选讲(选修4-1)

4-28几何证明选讲(选修4-1)

在解决与圆有关的问题时, 作圆的直径就可以利用直 径上的圆周角是直角, 往往能使问题找到突破口. 直径上 的圆周角是直角是圆周角定理的一个特殊情况, 这个定理 无论在几何证明中还是在高中数学的其他地方都有重要 应用,应熟练掌握.
数学(理) 第19页
新课标· 高考二轮总复习
求证:DG· DE=DF· EG. [分析] 由于条件中有平行线,考虑平行线(等)分线
段定理及推论,利用相等线段(平行四边形对边相等),经 中间比代换,证明线段成比例,得出等积式.
数学(理) 第20页
新课标· 高考二轮总复习
[证明] ∵四边形 ABCD 是平行四边形, ∴AD∥BC,AB∥DC,AD=BC, DG AD ∵AD∥BC,∴ = , EG EC DF BC AD DG DF 又∵AB∥DC,∴ = = ,∴ = , DE EC EC EG DE 即 DG· DE=DF· EG.
数学(理) 第17页
新课标· 高考二轮总复习
切线 长定 理
PA、PB 是 (1)PA=PB
(1) 证 线 段 相
Hale Waihona Puke ⊙ O 的 切 (2) ∠ OPA = 等,已知 PA 线 ∠OPB 求 PB(2)求角
数学(理) 第18页
新课标· 高考二轮总复习
高频考点
类型一 平行线(等)分线段成比例定理的应用
【例 1】 如图,F 为 ABCD 边上一点,连 DF 交 AC 于 G,延长 DF 交 CB 的延长线于 E.
数学(理) 第8页
新课标· 高考二轮总复习
(3)相似三角形的性质 ①相似三角形的性质(一) (ⅰ)相似三角形对应高的比、对应中线的比和对应角 平分线的比都等于相似比. (ⅱ)相似三角形周长的比等于相似比. (ⅲ)相似三角形面积的比等于相似比的平方. ②相似三角形的性质(二)

高中数学第十一章 几何证明选讲(选修4-1)

高中数学第十一章 几何证明选讲(选修4-1)

第十一章⎪⎪⎪几何证明选讲(选修4-1)第一节 相似三角形的判定及有关性质1.平行线的截割定理 (1)平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. (2)平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. 2.相似三角形的判定定理(1)判定定理1:两角对应相等,两三角形相似.(2)判定定理2:两边对应成比例且夹角相等,两三角形相似. (3)判定定理3:三边对应成比例,两三角形相似. 3.相似三角形的性质定理(1)性质定理:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.(2)推论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.4.直角三角形相似的判定定理(1)判定定理1:如果两个直角三角形有一个锐角对应相等,那么它们相似. (2)判定定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似. (3)判定定理3:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.直角三角形射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.[小题体验]1.(教材习题改编)如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF=12 cm ,则BC 的长为________ cm.解析:由⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 中点,M 为BC 的中点, 又EF ∥BC ⇒EF =MC =12 cm. ∴BC =2MC =24 cm. 答案:242.(教材习题改编)如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB=2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC , ∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49,故S △ADE S 四边形DBCE =45. 答案:451.在使用平行线截割定理时易出现对应边的对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角的对应失误.3.射影定理是直角三角形中的一个重要结论,其实质就是三角形的相似.但要注意满足直角三角形射影定理结论的三角形不一定是直角三角形,所以要搞清楚定理中的条件和结论之间的关系,不能乱用.[小题纠偏]1.(2016·鞍山模拟)如图,在▱ABCD 中,E 是BC 上一点,BE ∶EC =2∶3,AE 交BD 于点F ,则BF ∶FD 的值为________.解析:因为AD =BC ,BE ∶EC =2∶3, 所以BE ∶AD =2∶5,因为AD ∥BC , 所以BF ∶FD =BE ∶AD =2∶5, 所以BF ∶FD 的值为25.答案:252.如图,在Rt △ABC 中 ,∠BAC =90°,AD 是斜边BC 上的高,若AB ∶AC =2∶1,则AD ∶BC 为________.解析:设AC =k ,则AB =2k ,BC =5k , ∵∠BAC =90°,AD ⊥BC , ∴AC 2=CD ·BC , ∴k 2=CD ·5k ,∴CD =55k , 又BD =BC -CD =455k , ∴AD 2=CD ·BD =55k ·455k =45k 2, ∴AD =255k ,∴AD ∶BC =2∶5. 答案:2∶5考点一 平行线分线段成比例定理的应用(基础送分型考点——自主练透)[题组练透]1.如图,在梯形ABCD 中,AD ∥BC ,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF ∥BC ,若AD =12,BC =20,求EF 的值.解:∵AD ∥BC , ∴OB OD =BC AD =2012=53, ∴OB BD =58.∵OE ∥AD ,∴OE AD =OB BD =58.∴OE =58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF =OE +OF =15.2.如图,在△ABC 中,点D 是AC 的中点,点E 是BD 的中点,AE 交BC 于点F ,求BFFC 的值.解:如图,过点D 作DM ∥AF 交BC 于点M . ∵点E 是BD 的中点,∴在△BDM 中,BF =FM . 又点D 是AC 的中点, ∴在△CAF 中,CM =MF , ∴BF FC =BF FM +MC =12.[谨记通法]平行线分线段成比例定理及推论的应用的一个注意点及一种转化(1)一个注意点:利用平行线分线段成比例定理来计算或证明,首先要观察平行线组,再确定所截直线,进而确定比例线段及比例式,同时注意合比性质、等比性质的运用.(2)一种转化:解决此类问题往往需要作辅助的平行线,要结合条件构造平行线组,再应用平行线分线段成比例定理及其推论转化比例式解题.考点二 相似三角形的判定及性质 (重点保分型考点——师生共研)[典例引领]如图,在△ABC 中,AB =AC ,∠BAC =90°,D ,E ,F 分别在AB ,AC ,BC 上,AE =13AC ,BD =13AB ,且CF =13BC .求证:(1)EF ⊥BC ; (2)∠ADE =∠EBC . 证明:设AB =AC =3a , 则AE =BD =a ,CF =2a . (1)CE CB =2a 32a =23,CF CA =2a 3a =23. 又∠C 为公共角, 故△BAC ∽△EFC ,由∠BAC =90°,得∠EFC =90°, 故EF ⊥BC .(2)由(1)得EF =FC AC ·AB =2a , 故AE EF =a 2a =22,AD BF =2a 22a =22,∴AE EF =AD BF, ∴△ADE ∽△FBE , 所以∠ADE =∠EBC .[由题悟法]证明相似三角形的一般思路(1)先找两对内角对应相等.(2)若只有一个角对应相等,再判定这个角的两邻边是否对应成比例. (3)若无角对应相等,就要证明三边对应成比例.[即时应用]如图,已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠BCE .又因为AD =AC ,所以∠ADC =∠ACB.所以△ABC ∽△FCD.(2)如图,过点A 作AM ⊥BC , 垂足为点M .因为△ABC ∽△FCD ,BC =2CD , 所以S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4.又因为S △FCD =5,所以S △ABC =20. 因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BDBM . 因为DM =12DC =52,BM =BD +DM ,所以DE 4=55+52,解得DE =83.考点三 直角三角形中的射影定理 (重点保分型考点——师生共研)[典例引领]如图所示,CD 垂直平分AB ,点E 在CD 上,DF ⊥AC ,DG ⊥BE ,F ,G 分别为垂足.求证:AF ·AC =BG ·BE . 证明:因为CD 垂直平分AB , 所以∠ADC =∠BDC =90°,AD =D B.在Rt △ADC 中,因为DF ⊥AC , 所以AD 2=AF ·AC . 同理BD 2=BG ·BE . 所以AF ·AC =BG ·BE .[由题悟法]对射影定理的理解和应用(1)利用直角三角形的射影定理解决问题首先确定直角边与其射影.(2)要善于将有关比例式进行适当的变形转化,有时还要将等积式转化为比例式或将比例式转化为等积式,并且注意射影定理的其他变式.(3)注意射影定理与勾股定理的结合应用.[即时应用]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,求tan ∠BCD 的值. 解:由射影定理得CD 2=AD ·BD , 又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0). ∴CD 2=9x 2, ∴CD =3x .Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.1.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,求EF BC +FGAD 的值.解:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC ,故EF BC +FG AD =AF AC +FC AC =AC AC =1.2.如图,等边三角形DEF 内接于△ABC ,且DE ∥BC ,已知AH ⊥BC 于点H ,BC =4,AH =3,求△DEF 的边长.解:设DE =x ,AH 交DE 于点M ,显然MH 的长度与等边三角形DEF 的高相等,又DE ∥BC ,则DE BC =AM AH =AH -MH AH , 所以x4=3-32x 3=2-x 2,解得x =43.故△DEF 的边长为43.3.如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M 分别交AD ,AC 于点E ,F ,交CB 的延长线于点N .若AE =2,AD =6,求AFAC的值. 解:∵AD ∥BC , ∴△AEF ∽△CNF , ∴AF CF =AE CN , ∴AF AF +CF =AEAE +CN.∵M 为AB 的中点,∴AE BN =AMBM =1,∴AE =BN , ∴AF AC =AF AF +CF =AE AE +BN +BC =AE 2AE +BC. ∵AE =2,BC =AD =6, ∴AF AC =22×2+6=15.4.如图,AD ,BE 是△ABC 的两条高,DF ⊥AB ,垂足为F ,交BE 于点G ,交AC 的延长线于H ,求证:DF 2=GF ·HF .证明:在△AFH 与△GFB 中, 因为∠H +∠BAC =90°, ∠GBF +∠BAC =90°,所以∠H =∠GBF .因为∠AFH =∠BFG =90°, 所以△AFH ∽△GFB , 所以HF BF =AF GF , 所以AF ·BF =GF ·HF .因为在Rt △ABD 中,FD ⊥AB , 所以DF 2=AF ·BF . 所以DF 2=GF ·HF .5.(2016·大连模拟)如图,已知D 为△ABC 中AC 边的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =8,求AE 的长.解:因为AE ∥BC ,D 为AC 的中点, 所以AE =CF ,AE BF =AG BG =13.设AE =x ,又BC =8, 所以x x +8=13,所以x =4. 所以AE =4.6.(2016·大连模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求BFFC 的值;(2)若△BEF 的面积为S 1,四边形CDEF 的面积为S 2,求S 1∶S 2的值. 解:(1)过点D 作DG ∥BC ,并交AF 于点G ,因为E 是BD 的中点,所以BE =DE . 又因为∠EBF =∠EDG ,∠BEF =∠DEG , 所以△BEF ≌△DEG ,则BF =DG , 所以BF ∶FC =DG ∶FC .又因为D 是AC 的中点,则DG ∶FC =1∶2, 则BF ∶FC =1∶2,即BF FC =12.(2)若△BEF 以BF 为底,△BDC 以BC 为底, 则由(1)知BF ∶BC =1∶3,又由BE ∶BD =1∶2,可知h 1∶h 2=1∶2, 其中h 1,h 2分别为△BEF 和△BDC 的高, 则S △BEF S △BDC =13×12=16, 则S 1∶S 2=1∶5. 故S 1∶S 2的值为15.7.如图,在△ABC 中,AB =AC ,过点A 的直线与其外接圆交于点P ,交BC 的延长线于点D.(1)求证:PC AC =PDBD ;(2)若AC =3,求AP ·AD 的值.解:(1)证明:因为∠CPD =∠ABC ,∠PDC =∠PDC , 所以△DPC ∽△DBA ,所以PC AB =PD BD . 又AB =AC ,所以PC AC =PD BD. (2)因为∠ABC +∠APC =180°,∠ACB +∠ACD =180°, ∠ABC =∠ACB , 所以∠ACD =∠APC .又∠CAP =∠DAC ,所以△APC ∽△ACD , 所以AP AC =AC AD. 所以AP ·AD =AC 2=9.8.△ABC 中,D ,E ,F 分别是BC ,AB ,AC 上的点,AD ,EF 交于点P ,若BD =DC ,AE =AF .求证:AB AC =PF PE .证明:过F 作MN ∥AD 交BA 的延长线及DC 于M ,N .对△MEF ,有PF PE =AMAE ,因为AE =AF ,所以PF PE =AM AF. 对△MBN ,有AB AM =BDDN , 因为BD =DC ,所以AB AM =DCDN . 对△ADC ,有AC AF =DC DN ,所以AB AM =ACAF . 所以AB AC =AM AF ,所以AB AC =PF PE .第二节 直线与圆的位置关系1.圆周角(1)定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)推论1:①同弧或等弧所对的圆周角相等; ②同圆或等圆中,相等的圆周角所对的弧也相等. (3)推论2:①半圆(或直径)所对的圆周角是直角; ②90°的圆周角所对的弦是直径. 2.圆的切线(1)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.3.弦切角定理及其推论(1)定理:弦切角等于它所夹的弧所对的圆周角. (2)推论:弦切角的度数等于它所夹的弧的度数的一半. 4.圆中的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.[小题体验]1.(教材习题改编)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设垂足为D ,⊙O 的半径等于R , ∵AB ,BC 是⊙O 的两条弦, AO ⊥BC ,AB =3,BC =22, ∴AD =1,∴R 2=2+(R -1)2, ∴R =1.5.故⊙O 的半径为1.5. 答案:1.52.如图,AC 为⊙O 的直径,OB ⊥AC ,弦BN 交AC 于点M .若OC =3,OM =1,则MN 的长为________.解析:由题意得: CM =CO +OM =3+1, AM =AO -OM =3-1, BM 2=OB 2+OM 2=4,BM =2, 根据相交弦定理有CM ·AM =BM ·MN ,代入数值可解得MN =CM ·AM BM =(3+1)(3-1)2=1.答案:13.如图,⊙O 的直径AB =6 cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC ,若∠CPA =30°,PC =________ cm.解析:连接OC ,则OC ⊥PC .又OC =3,∠CPA =30°, ∴CP =OCtan 30°=3 3.答案:3 31.解决圆周角、圆心角及弦切角问题时,角之间关系易于混淆导致错误.2.使用相交弦定理与切割线定理时,注意对应线段成比例及相似三角形知识的应用.[小题纠偏]1.如图所示,CD 是圆O 的切线,切点为C ,点B 在圆O 上,BC =2,∠BCD =30°,则圆O 的面积为________.解析:设圆O的半径为r,过B作⊙O的直径BA,连接AC,则∠ACB=90°.又由弦切角定理得∠CAB=∠BCD=30°,∴AB=2BC=4.∴r=2,∴S=πr2=4π.答案:4π2.如图所示,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为________.解析:设⊙O的半径为r.由割线定理得PA·PB=PC·PD,3×7=(PO-r)(PO+r),即21=25-r2,∴r2=4,∴r=2.答案:2考点一圆周角、弦切角和圆的切线问题(基础送分型考点——自主练透)[题组练透]1.(2016·黄冈模拟)已知点C在圆O的直径BE的延长线上,直线CA与圆O相切于A,∠ACB的平分线分别交AB,AE于D,F两点,求∠AFD的大小.解:因为AC为圆O的切线,由弦切角定理,得∠B=∠EAC.又因为CD平分∠ACB,则∠ACD=∠BCD,所以∠B+∠BCD=∠EAC+∠ACD.根据三角形外角定理,∠ADF=∠AFD.因为BE是圆O的直径,则∠BAE=90°,所以△ADF是等腰直角三角形.所以∠ADF=∠AFD=45°.2.(2015·广东高考改编)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,求OD的长.解:由题意得OP =12BC =12,OA =2,于是PA =CP =22-⎝⎛⎭⎫122=152. 因为∠DCP =∠B =∠POA ,又∠DPC =∠APO ,所以△DCP ∽△AOP , 故PD PA =PCPO, 即PD =15212×152=152,所以OD =152+12=8.[谨记通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.考点二 圆内接四边形的性质及判定 (重点保分型考点——师生共研)[典例引领](2016·昆明模拟)如图所示,已知D 为△ABC 的BC 边上一点,⊙O 1经过点B ,D ,交AB 于另一点E ,⊙O 2经过点C ,D ,交AC 于另一点F ,⊙O 1与⊙O 2的另一交点为G .(1)求证:A ,E ,G ,F 四点共圆;(2)若AG 切⊙O 2于G ,求证:∠AEF =∠ACG . 证明:(1)如图,连接GD ,四边形BDGE ,四边形CDGF 分别内接于⊙O 1,⊙O 2, ∴∠AEG =∠BDG , ∠AFG =∠CDG ,又∠BDG +∠CDG =180°, ∴∠AEG +∠AFG =180°,∴A,E,G,F四点共圆.(2)∵A,E,G,F四点共圆,∴∠AEF=∠AGF,∵AG与⊙O2相切于点G,∴∠AGF=∠ACG,∴∠AEF=∠ACG.[由题悟法]证明四点共圆的常用方法(1)若四个点到一定点等距离,则这四个点共圆.(2)若一个四边形的一组对角的和等于180°,则这个四边形的四个顶点共圆.(3)若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆.(4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.[即时应用](2016·吉林实验中学)如图,圆周角∠BAC的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点E,AD交BC于点F.(1)求证:BC∥DE;(2)若D,E,C,F四点共圆,且AC=BC,求∠BAC.解:(1)证明:因为DE为圆的切线,所以∠EDC=∠DAC.又因为∠DAC=∠DAB,∠DAB=∠DCB,所以∠EDC=∠DCB,所以BC∥DE.(2)因为D,E,C,F四点共圆,所以∠CFA=∠CED,由(1)知∠ACF=∠CED,所以∠CFA=∠ACF.设∠DAC=∠DAB=x,因为AC=BC,所以∠CBA=∠BAC=2x,所以∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,180°=∠CFA+∠ACF+∠CAF=7x,则x≈25.7°,所以∠BAC=2x≈51.4°.考点三 与圆有关的比例线段 (重点保分型考点——师生共研)[典例引领](2015·陕西高考)如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(1)证明:∠CBD =∠DBA;(2)若AD =3DC ,BC =2,求⊙O 的直径. 解:(1)证明:因为DE 为⊙O 的直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED.又AB 切⊙O 于点B ,得∠DBA =∠BED , 所以∠CBD =∠DBA . (2)由(1)知BD 平分∠CBA , 则BA BC =ADCD=3. 又BC =2,从而AB =3 2. 所以AC =AB 2-BC 2=4, 所以AD =3.由切割线定理得AB 2=AD ·AE , 即AE =AB 2AD =6,故DE =AE -AD =3, 即⊙O 的直径为3.[由题悟法]与圆有关的比例线段解题思路(1)见到圆的两条相交弦就要想到相交弦定理. (2)见到圆的两条割线就要想到割线定理. (3)见到圆的切线和割线就要想到切割线定理.[即时应用]1.(2015·天津高考改编)如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,求线段NE 的长.解:由题意可得CM ·MD =AM ·MB , 则2×4=2AM 2,AM =2. 又CN ·NE =AN ·NB , 即3NE =4×2,解得NE =83.2.(2015·湖北高考改编)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且BC =3PB ,求ABAC的值. 解:因为PA 是圆的切线, A 为切点,PBC 是圆的割线,由切割线定理,知PA 2=PB ·PC =PB (PB +BC ), 因为BC =3PB ,所以PA 2=4PB 2,即PA =2PB. 由弦切角定理,得∠PAB =∠PCA , 又∠APB =∠CPA ,故△PAB ∽△PCA , 所以AB AC =PB PA =12.1.(2015·重庆高考改编)如图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE ∶ED =2∶1,求BE 的长.解:由切割线定理,知PA 2=PC ·PD , 即62=3PD , 解得PD =12,所以CD =PD -PC =9, 所以CE =6,ED =3.由相交弦定理,知AE ·EB =CE ·ED ,即9BE =6×3,解得BE =2.2.(2016·兰州双基测试)如图,在正△ABC 中,点D ,E 分别在BC ,AC 上,且BD =13BC ,CE =13CA ,AD ,BE 相交于点P .求证:(1)P ,D ,C ,E 四点共圆; (2)AP ⊥CP .证明:(1)在正△ABC 中,由BD =13BC ,CE =13CA ,知:△ABD ≌△BCE ,∴∠ADB =∠BEC ,即∠ADC +∠BEC =180°, ∴P ,D ,C ,E 四点共圆.(2)连接DE ,在△CDE 中,CD =2CE ,∠ACD =60°, 由正弦定理知∠CED =90°,由P ,D ,C ,E 四点共圆知,∠DPC =∠DEC , ∴AP ⊥CP .3.(2016·陕西一检)如图,设AB 为⊙O 的任一条不与直线l 垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C ,D ,且PC =PD.(1)求证:l 是⊙O 的切线;(2)若⊙O 的半径OA =5,AC =4,求CD 的长.解:(1)证明:连接OP , ∵AC ⊥l ,BD ⊥l , ∴AC ∥BD.又OA =OB ,PC =PD , ∴OP ∥BD ,从而OP ⊥l .∵点P 在⊙O 上,∴l 是⊙O 的切线. (2)由(1)可得OP =12(AC +BD ),∴BD =2OP -AC =10-4=6. 过点A 作AE ⊥BD ,垂足为E , 则BE =BD -AC =6-4=2. ∴在Rt △ABE 中,AE =AB 2-BE 2=102-22=4 6. ∴CD =4 6.4.(2015·全国卷Ⅰ)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC交⊙O 于点E .(1)若D 为AC 的中点,证明:DE 是⊙O 的切线; (2)若OA =3CE ,求∠ACB 的大小. 解:(1)证明:如图,连接AE ,由已知得AE ⊥BC ,AC ⊥AB. 在Rt △AEC 中,由已知得DE =DC ,故∠DEC =∠DCE . 连接OE ,则∠OBE =∠OEB. 又∠ACB +∠ABC =90°, 所以∠DEC +∠OEB =90°,故∠OED =90°,即DE 是⊙O 的切线. (2)设CE =1,AE =x .由已知得AB =23,BE =12-x 2. 由射影定理可得AE 2=CE ·BE , 所以x 2=12-x 2,即x 4+x 2-12=0. 解得x =3,所以∠ACB =60°.5.(2015·沈阳一模)如图所示,已知AB 为圆O 的直径,C ,D 是圆O 上的两个点,CE ⊥AB 于E ,BD 交AC 于G ,交CE 于F ,CF =FG .(1)求证:C 是劣弧BD 的中点; (2)求证:BF =FG .证明:(1)∵CF =FG ,∴∠CGF =∠FCG . ∵AB 是圆O 的直径,∴∠ACB =∠ADB =π2.∵CE ⊥AB ,∴∠CEA =π2.∵∠CBA =π2-∠CAB ,∠ACE =π2-∠CAB ,∴∠CBA =∠ACE .∵∠CGF =∠DGA ,∠DGA =∠ABC , ∴π2-∠DGA =π2-∠ABC , ∴∠CAB =∠DAC , ∴C 为劣弧BD 的中点.(2)∵∠GBC =π2-∠CGB ,∠FCB =π2-∠GCF ,∴∠GBC =∠FCB ,∴CF =FB ,∴BF =FG .6.(2016·贵州七校联考)如图,⊙O 1和⊙O 2的公切线AD 和BC 相交于点D ,A ,B ,C 为切点,直线DO 1交⊙O 1于E ,G 两点,直线DO 2交⊙O 2于F ,H 两点.(1)求证:△DEF ∽△DHG ;(2)若⊙O 1和⊙O 2的半径之比为9∶16,求DEDF 的值. 解:(1)证明:∵AD 是两圆的公切线, ∴AD 2=DE ·DG ,AD 2=DF ·DH , ∴DE ·DG =DF ·DH ,∴DE DH =DF DG , 又∵∠EDF =∠HDG , ∴△DEF ∽△DHG .(2)连接O 1A ,O 2A , ∵AD 是两圆的公切线, ∴O 1A ⊥AD ,O 2A ⊥AD , ∴O 1,A ,O 2共线,∵AD 和BC 是⊙O 1和⊙O 2的公切线, DG 平分∠ADB ,DH 平分∠ADC , ∴DG ⊥DH ,∴AD 2=O 1A ·O 2A .设⊙O 1和⊙O 2的半径分别为9x 和16x ,则AD =12x , ∵AD 2=DE ·DG ,AD 2=DF ·DH ,∴144x 2=DE (DE +18x ),144x 2=DF (DF +32x ), ∴DE =6x ,DF =4x , ∴DE DF =32.7.(2016·沈阳模拟)如图,已知圆O 1与圆O 2外切于点P ,直线AB 是两圆的外公切线,分别与两圆相切于A ,B 两点,AC 是圆O 1的直径,过C 作圆O 2的切线,切点为D.(1)求证:C ,P ,B 三点共线; (2)求证:CD =CA .证明:(1)连接PC ,PA ,PB ,BO 2,∵AC是圆O1的直径,∴∠APC=90°.连接O1O2必过点P,∵AB是两圆的外公切线,A,B为切点,∴设∠BAP=∠ACP=α,∴∠AO1P=2α.由于O1A⊥AB,O2B⊥AB,∴∠BO2P=π-2α,∴∠O2BP=α.又∠ABP+∠O2BP=90°,∴∠ABP+∠BAP=90°,∴C,P,B三点共线.(2)∵CD切圆O2于点D,∴CD2=CP·CB.在△ABC中,∠CAB=90°,又∵AP⊥BC,∴CA2=CP·CB,故CD=CA.8.(2015·全国卷Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=23,求四边形EBCF的面积.解:(1)证明:由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为⊙O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF,从而EF∥BC.(2)由(1)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为⊙O的弦,所以O在AD上.连接OE,OM,则OE⊥AE.由AG等于⊙O的半径得AO=2OE,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形. 因为AE =23,所以AO =4,OE =2.因为OM =OE =2,DM =12MN =3, 所以OD =1.于是AD =5,AB =1033. 所以四边形EBCF 的面积为12×⎝⎛⎭⎫10332×32-12×(23)2×32=1633.。

【高考精品复习】选修4-1 几何证明选讲 第1讲 平行截割定理与相似三角形

【高考精品复习】选修4-1 几何证明选讲 第1讲 平行截割定理与相似三角形

第1讲平行截割定理与相似三角形【高考会这样考】考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用.【复习指导】复习本讲时,只要掌握好教材上的内容,熟练教材上的习题即可达到高考的要求,该部分的复习以基础知识、基本方法为主,掌握好解决问题的基本技能即可.基础梳理1.平行截割定理(1)平行线等分线段定理及其推论①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.(2)平行截割定理及其推论①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.(3)三角形角平分线的性质三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.(4)梯形的中位线定理梯形的中位线平行于两底,并且等于两底和的一半.2.相似三角形(1)相似三角形的判定①判定定理a.两角对应相等的两个三角形相似.b .两边对应成比例且夹角相等的两个三角形相似.c .三边对应成比例的两个三角形相似.②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.③直角三角形相似的特殊判定斜边与一条直角边对应成比例的两个直角三角形相似. (2)相似三角形的性质相似三角形的对应线段的比等于相似比,面积比等于相似比的平方. (3)直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.双基自测1.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A ,B ,C 和A ′,B ′,C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析 由平行线等分线段定理可直接得到答案.答案 322.如图所示,BD 、CE 是△ABC 的高,BD 、CE 交于F ,写出图中所有与△ACE 相似的三角形________.解析 由Rt △ACE 与Rt △FCD 和Rt △ABD 各共一个锐角,因而它们均相似,又易知∠BFE =∠A ,故Rt △ACE ∽Rt △FBE . 答案 △FCD 、△FBE 、△ABD3.(2011·西安模拟)如图,在△ABC 中,M 、N 分别是AB 、BC 的中点,AN 、CM 交于点O ,那么△MON 与△AOC 面积的比是________. 解析 ∵M 、N 分别是AB 、BC 中点,故MN 綉12AC , ∴△MON ∽△COA ,∴S △MON S △AOC =MN 2AC 2=14.答案 1∶44.如图所示,已知DE ∥BC ,BF ∶EF =3∶2,则AC ∶AE =______,AD ∶DB =________.解析 ∵DE ∥BC ,∴AE AC =DE BC =EFBF .∵BF ∶EF =3∶2,∴AE AC =EF BF =23.∴AC ∶AE =3∶2.同理DE ∥BC ,得AB ∶AD =3∶2,即AB AD =32. ∴AD AB =23,即AD AB -AD =23-2=2.即ADBD =2.∴AD ∶BD =2∶1. 答案 3∶2 2∶15.(2010·广东)如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E 、F 分别为线段AB 、AD 的中点,则EF =________.解析 连接DE 和BD ,依题知,EB ∥DC ,EB =DC =a2,∴EBCD 为平行四边形,∵CB ⊥AB ,∴DE ⊥AB ,又E 是AB 的中点,故AD =DB =a ,∵E ,F 分别是AD 、AB 的中点,∴EF =12DB =12a . 答案 a 2考向一 平行截割定理的应用【例1】►(2011·广州测试(二))在梯形ABCD 中,AD ∥BC ,AD =2,BC =5,点E 、F 分别在AB 、CD 上,且EF ∥AD ,若AE EB =34,则EF 的长为________. [审题视点] 把梯形的两腰BA 、CD 分别延长交于一点,利用平行截割定理可求解.解析 如图所示,延长BA 、CD 交于点P ,∵AD ∥BC ,∴P A PB =AD BC =25,∴P A AB =23,又∵AE EB =34,∴AE AB =37,∴P A AE =149,∴P A PE =1423.∵AD ∥EF ,∴AD EF =P A PE =1423,又AD =2,∴EF =237. 答案 237在解题时要注意添加辅助线.【训练1】 如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析由⎩⎨⎧DE ∥BC ,EF ∥CD ,BC =3,DE =2⇒AE AC =AF AD =DE BC =23,又DF =1,故可解得AF =2,∴AD =3,又AD AB =23,∴AB =92. 答案 92考向二 相似三角形的判定和性质的应用【例2】►已知,如图,在△ABC 中,AB =AC ,BD ⊥AC ,点D 是垂足. 求证:BC 2=2CD ·AC .[审题视点] 作AE ⊥BC ,证明△AEC 和△BDC 相似即可.证明 过点A 作AE ⊥BC ,垂足为E , ∴CE =BE =12BC ,由BD ⊥AC ,AE ⊥BC . 又∴∠C =∠C ,∴△AEC ∽△BDC . ∴EC DC =ACBC ,∴12BC CD =AC BC , 即BC 2=2CD ·AC.判定两个三角形相似要注意结合图形的性质特点灵活选择判定定理.在一个题目中,相似三角形的判定定理和性质定理可能多次用到. 【训练2】 (2011·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析 因为DE ∥BC ,所以△ADE ∽△ABC ,所以AE AC =DE BC ,即35=6BC ,所以BC =10.又DF ∥AC ,所以四边形DECF 是平行四边形,故BF =BC -FC =BC -DE =10-6=4. 答案 4考向三直角三角形射影定理的应用【例3】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.[审题视点] △ACB为直角三角形,可直接利用射影定理求解.解析如图,连接AC,CB,∵AB是⊙O的直径,∴∠ACB=90°设AD=x,∵CD⊥AB于D,∴由射影定理得CD2=AD·DB,即62=x(13-x),∴x2-13x+36=0,解得x1=4,x2=9.∵AD>BD,∴AD=9.答案9注意射影定理的应用条件.【训练3】在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD 与△CBD的相似比为________.解析如图所示,在Rt△ACB中,CD⊥AB,由射影定理得:CD2=AD·BD,又∵AD∶BD=2∶3,令AD=2x,BD=3x(x>0),∴CD2=6x2,∴CD=6x.又∵∠ADC=∠BDC=90°,∴△ACD∽△CBD.易知△ACD与△CBD的相似比为ADCD=2x6x=63.即相似比为6∶3.答案6∶3高考中几何证明选讲问题(一)从近两年新课标高考试题可以看出,高考主要以填空题的形式考查平行截割定理和相似三角形判定定理的应用,难度不大.【示例1】►(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.【示例2】►(2011·广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.。

高考数学一轮复习 几何证明选讲 第一节 相似三角形的判定及有关性质课件 理 选修4-1

高考数学一轮复习 几何证明选讲 第一节 相似三角形的判定及有关性质课件 理 选修4-1

[典题 2] 如图,已知在△ABC 中,D 是 BC 边的中点,且 AD=AC,DE⊥BC,DE 与 AB 相交于点 E,EC 与 AD 相交于 点 F.
(1)求证:△ABC∽△FCD; (2)若 S△FCD=5,BC=10,求 DE 的长.
[听前试做] (1)证明:因为 DE⊥BC,D 是 BC 的中点, 所以 EB=EC,所以∠B=∠BCE.又因为 AD=AC,所以∠ ADC=∠ACB.所以△ABC∽△FCD.
(4)在直角三角形 ABC 中,AC⊥BC,CD⊥AD,则 BC2= BD·AB.( )
(5) 若 两 个 三 角 形 的 相 似 比 等 于 1 , 则 这 两 个 三 角 形 全 等.( )
答案:(1)× (2)√ (3)√ (4)× (5)√
2.如图,F 为▱ABCD 的边 AD 延长线上的一点,DF=AD, BF 分别交 DC,AC 于 G,E 两点,EF=16,GF=12,则 BE 的 长为________.
(2)相似三角形的性质定理 ①性质定理:相似三角形对应高的比、对应中线的比和对应角 平分线的比都等于 相似比 ;相似三角形周长的比等于 相似比 ; 相似三角形面积的比等于相似比的 平方 . ②推论:相似三角形外接圆的直径比、周长比等于相似比,外 接圆的面积比等于相似比的 平方 .
(3)直角三角形相似的判定定理 ①判定定理 1:如果两个直角三角形 有一个锐角 对应相等, 那么它们相似. ②判定定理 2:如果两个直角三角形的 两条直角边 对应成比 例,那么它们相似. ③判定定理 3:如果一个直角三角形的 斜边 和一条直角边与 另一个三角形的 斜边 和一条直角边对应 成比例 ,那么这两个 BC 中,点 D 是 AC 的中点,点 E 是 BD 的中点,AE 交 BC 于点 F,求BFFC的值.

2020高考理科数学选修4-1-1

2020高考理科数学选修4-1-1

【答案】
1 14
课前自助餐
授人以渔
课时作业
高考调研
新课标版 ·高三数学(理)
探究 2 (1)判定两个三角形相似要注意结合图形性质灵活 选择判定定理.
相似三角形的判定定理可能要同时用到,先证两个三角形相 似,以此作铺垫,再证另两个三角形相似.
(2)相似三角形性质的作用 ①可用来证明线段成比例、角相等; ②可间接证明线段相等; ③为计算线段长度及角的大小创造条件; ④可计算周长、特征线段长等.
【答案】 C
课前自助餐
授人以渔
课时作业
高考调研
新课标版 ·高三数学(理)
探究 1 本题主要考查平行线分线段成比例定理的应用.解 题关键是通过作辅助线,发现其中的平行关系进行推理求解.另 外,本题还可以过 D 点作 BE 的平行线进行推理求解.
课前自助餐
授人以渔
课时作业
高考调研
新课标版 ·高三数学(理)
课前自助餐
授人以渔
课时作业
高考调研
新课标版 ·高三数学(理)
1. 如图,D、E 分别是△ABC 的边 AB、AC 上的点,DE∥
BC,且ADDB=2,那么△ADE 与四边形 DBCE 的面积比是________.
答案
4 5
解析 ∵ADDB=2,∴AADB=23.
故SS△ △AADBCE=49,∴S四S边△形ADDBECE=45.
课前自助餐
授人以渔
课时作业
高考调研
新课标版 ·高三数学(理)
5.相似三角形的性质定理 (1)相似三角形对应高的比、对应中线的比和对应角平分线 的比都等于相似 比; (2)相似三角形周长的比等于相似比; (3)相似三角形面积的比等于相似比的平方 ; (4)相似三角形外接圆的直径比、周长比等于相似 比,外接 圆的面积比等于相似比的 平方 .

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

选修4-1 几何证明选讲 (3)

选修4-1  几何证明选讲 (3)

解析:∴∠HAD=30°,∠AHD=90°,
∴∠D=60°,由圆内接四边形的对角和是180°,得∠B=120°
答案:120°
4.如图所示,⊙O的直径AC=2,∠BAD=75°,∠ACD=45°,则四边形ABCD 的周长为________.(结果取准确值)
解析:∵∠BAD=75°,∴∠BCD=105°,
圆内接四边形的问题,要抓住角度的相等或互补,转化为四点共圆;同样利用 四点共圆,可以得到相关的角度相等. 【例3】在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM= ∠CBK.求证:C,D,K,M四点共圆.
思路点拨:由∠DAM=∠CBK,易得A,B,M,K四点共圆,由此转化到相关 角相等与互补,再证C,D,K,M四点共圆.
说在这个三角形中B,D,H,E四点共圆的充要条件是∠B=60°.
【知识链接】
三角形中的4个心
外心:三角形三条边的垂直平分线交于一点,这个点叫做三角形的外心;内心:三 角形的三条角平分线交于一点,这个点叫做三角形的内心;重心:三角形的三条中
线交于一点,这个点叫做三角形的重心;垂心:三角形的三条高线交于一点,这个
证明:在四边形ABMK中.∵∠DAM=∠CBK, ∴A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK. ∵∠DAB+∠ADC=180°,∴∠CMK+∠KDC=180°. 故C,D,K,M四点共圆.
变式3:在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM= ∠CBK. 求证:∠DMA=∠CKB. 证明:易知A,B,M,K四点共圆,则∠AMB=∠BKA. 连接KM,如图所示, 有∠DAB=∠CMK.∵∠DAB+∠ADC=180°, ∴∠CMK+∠KDC=180°.故C,D,K,M四点共圆⇒∠CMD=∠DKC. 又∠AMB=∠BKA,∴∠DMA=∠CKB.

新课标人教A版数学选讲4-1几何证明选讲二

新课标人教A版数学选讲4-1几何证明选讲二

几何证明选讲教学设计考试要求1、了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理;2、理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论;3、掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.教材分析这是新课程选修课程的一个新的内容,本专题的内容包括相似三角形的进一步认识、圆的进一步认识.平行线等分线段定理是在“一组平行线”只取三条这种最简单的情况下证明的,证明的方法是借助梯形常用的辅助线把梯形分成平行四边形和三角形,用平行四边形和三角形的知识进行证明.平行截割定理是平行线等分线段定理的一般情形,是研究相似形最重要和最基本的理论,其证明体现了化归的思想,把它应用在三角形上就得到了定理的一个重要推论,这个推论是判定三角形相似的理论基础.圆周角的概念、圆周角定理及其推论在推理论证和计算中应用比较广泛,将圆周角的一边绕顶点旋转到与圆相切时,就得到弦切角,圆周角定理和弦切角定理的证明都体现了分类讨论的思想,体现了从特殊到一般的思维过程.相交弦定理、割线定理、切割线定理合称“圆幂定理”,在有关的计算和证明中起着重要的作用.本讲的内容在初中已经通过观察、实验和操作的方法初步了解,这里不仅是对初中知识的深化,更侧重于逻辑推理与抽象思维.在几何证明的过程中,不仅包含了逻辑演绎的程序,还包含着大量的观察、探索、发现的创造性过程,因此本章是考查推理能力和逻辑思维能力的好资料,在平时的训练中要熟悉基本图形和基本结论,善于归纳总结,提高运用几何方法解决问题的能力.第一讲平行线等分线段定理和平行截割定理教学目标知识与技能:复习相似三角形的定义与性质,了解平行截割定理.过程与方法:以“平行线分线段成比例定理”为起点,给出相似三角形定义后,逐步讨论相似三角形的判定定理、性质定理等等。

情感态度价值观:基本数学思想是比例及其性质的应用,通过观察、探索、发现的创造性过程,培养创新意识。

新课标人教A版数学选讲4-1几何证明选讲

新课标人教A版数学选讲4-1几何证明选讲

1.如图1,321////l l l ,AM=3,BM=5,CM=4.5,EF=16,则DM= ,EK= ,FK= . 2.如图2,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm,梯上点D 距墙70cm ,BD 长55cm ,则梯子的长为 cm .3.如图3,ΔABC 中,∠1=∠B,则Δ ∽Δ .此时若AD=3,BD=2,则AC= . 4.如图4,CD 是Rt ΔABC 的斜边上的高. (1)若AD=9,CD=6,则BD= ; (2)若AB=25,BC=15,则BD= .例1 如图5,等边△DEF 内接于△ABC ,且DE //BC ,已知BC AH ⊥于点H ,BC =4,AH =3,求△DEF 的边长.图5 例2如图6,在ΔABC 中,作直线DN 平行于中线AM ,设这条直线交边AB 与点D ,交边CA 的延长线于点E ,交边BC 于点N . 求证:AD ∶AB=AE ∶AC .例3 如图7,E ,F 分别是正方形ABCD 的边AB 和AD 上的点,且31AD AF AB EB ==. 求证:∠AEF=∠FBD .1.如图8,ΔABC 中,点D 为BC 中点,点E 在CA 上,且CE=21EA ,AD ,BE 交于点F ,则AF:FD= .2.一个等腰梯形的周长是80cm ,如果它的中位线长与腰长相等,它的高是12cm ,则这个梯形的面积为 cm 2.3.两个三角形相似,它们的周长分别是12和18,周长较小的三角形的最短边长为3,则另一个三角形的最短边长为 .4.如图9,已知∠1=∠2,请补充条件: (写一个即可),使得ΔABC ∽ΔADE . A MCE K FBD l 1 l 2 l 3图1 AD B┐ ┐ 图2A BC DME图6N ACBD╭1 图3┐ABCD图4A FE D C E ╮ 1 A BCDMFE 图7F H1、如图10,点P 是⊙O 的直径BA 延长线上一点,PC 与⊙O 相切于点C ,CD ⊥AB ,垂足为D ,连结AC 、BC 、OC ,那么下列结论中正确结论的个数有个①PC2=P A·PB;②PC·OC=OP·CD;③OA 2=OD·OP;④OA(CP -CD)=AP·CD.2、AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若AP ∶PB =1∶4,CD =8,则直径AB 的长是3、如图11,AB 是⊙O 的直径,P 是AB 延长线上一点,PC 切⊙O 于点C ,PC=3,PB=1,则⊙O 的半径为 .4、如图12,圆O 上的一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的直径为 . 例1如图13,AB 是⊙O 的直径,C 是⊙O 外一点,且AC =AB ,BC 交⊙O 于点D .已知BC =4,AD =6,AC 交⊙O 于点E ,求四边形ABDE 的周长.例2 如图14,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC . (1)求证:FB =FC ;(2)若AB 是△ABC 的外接圆的直径, ∠EAC =120°,BC =6,求AD 的长.例3如图15,⊙1和⊙O 2都经过A 、B 两点,经过点A 的直线CD 与⊙O 1交于点C , 与⊙O 2交于点D .经过点B 的直线EF 与⊙O 1交于点E ,与⊙O 2交于点F .求证:CE ∥DF .1、下列命题中错误的是(1)过一个圆的直径两端点的两条切线互相平行(2)直线AB 与⊙O 相切于点A ,过O 作AB 的垂线,垂足必是A(3)若同一个圆的两条切线互相平行,则连结切点所得的线段是该圆的直径 (4)圆的切线垂直于半径2、如图17,已知AB 是⊙O 的弦,AC 切⊙O 于点A ,∠BAC=60°,则∠ADB 的度数为3、如图18,PA 与圆切于点A ,割线PBC 交圆于点B 、C ,若PA=6,PB=4,AB 的度数为60︒,则BC= ,∠PCA= ,∠PAB= . A O D P C B ┐ 图10 A B P C · 图11 O O 2 · · O 1 F E D C B A图15· BO A A PB4、如图19,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D ,若PE =PA ,︒=∠60ABC ,PD =1,BD =8,则线段BC = .1. 如图1,已知:AC ⊥AB ,BD ⊥AB ,AO=78cm ,BO=42cm ,CD=159cm ,则CO= cm ,DO= cm . 2.已知,如图2,AA ′∥EE ′,AB=BC=CD=DE ,A′B′=B′C′=C′D′=D′E′,若AA′=28mm ,EE ′=36mm ,则BB ′= ,CC ′= ,DD ′= .3.如图3,EF ∥BC,FD∥AB,AE=1.8cm,BE=1.2cm,CD=1.4cm .则BD= .4.已知,如图4,在平行四边形ABCD 中,DB 是对角线,E 是AB 上一点,连结CE 且延长和DA 的延长线交于F ,则图中相似三角形 的对数是 .5.如图5,在ABC ∆中,AD 是角BAC 的平分线,AB =5cm,AC =4cm,BC =7cm,则BD = cm .6.如图6,ED ∥FG ∥BC ,且DE ,FG 把ΔABC 的面积分为相等的三部分,若BC=15,则FG 的长为 . 7.如图7,已知矩形ABCD 中,∠AEF=90°,则下列结论一定正确的是 . (1)ΔABF ∽ΔAEF (2)ΔABF ∽ΔCEF (3)ΔCEF ∽ΔDAE (4)ΔADE ∽ΔAEF8.如图8,在Rt ΔABC 中,∠C=90°,D 是BC 中点,DE ⊥AB ,垂足为E ,∠B=30,AE=7.则DE 的长为 . 9.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是3:2,则梯形的上、下底长分别是__________.10.如图9,BD 、CE 是ABC V 的中线,P 、Q 分别是BD 、CE 的中点,则:PQ BC =11.如图10,在ABC ∆中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AC AF AB AE ⋅=⋅.A B C D EE ′D ′C ′B ′A ′图2ABCDF E图3AF E BCGD图4AD EB F G图6 ABCDEF图7A┐ CBE图8A O CB D┐ └ 图112.如图11,在梯形ABCD 中,AD ∥BC ,E ,F 分别是AB ,CD 的中点. 求证:GH=21(BC -AD ). 13.已知:如图12,ABC ∆中,AB AC =,90BAC ∠=,D 、E 、F 分别在AB 、AC 、BC 上,AC AE 31=,13BD AB =,且13CF BC =.求证:(1)EF BC ⊥;(2)ADE EBC ∠=∠.1,∠E=40°,则∠ACD= .2.如图2,已知⊙O 的切线PC 与直径BA 的延长线相交于点P ,C 是切点,过A 的切线交PC 于D ,如果CD ∶PD=1∶2,DA=2,那么⊙O 的半径OC= .3.如图3,ΔABC 内接于⊙O ,AD 切⊙O 于A ,∠BAD=60°,则∠ACB= .4.如图4,已知AD=AB ,∠ADB=350,则∠BOC 等于图11BCDA EFG HO · ABC DF图5ABPO图6A BCD E图1图2D 图35.如图5,ABCD 是⊙O 的内接四边形,AC 平分∠BAD 并与BD 交于E 点,CF 切⊙O 于C 交AD 延长线于F ,图中四个三角形:①ΔACF ;②ΔABC ;③ΔABD ;④ΔBEC ,其中与ΔC DF 一定相似的是 . 6.⊙O 中,弦AB 平分弦CD 于点E ,若CD=16,AE ∶BE=3∶1,则AB= .7.AB 是⊙O 的直径,OA=2.5,C 是圆上一点,CD ⊥AB ,垂足为D ,且CD=2,则AC= . 8.如图6,PAB 是⊙O 的割线,AB=4,AP=5,⊙O 的半径为6,则PO= . 9.半径为5的⊙O 内有一点A ,OA=2,过点A 的弦CD 被A 分成两部分,则AC·CD= . 10.如图7,已知⊙O 的半径OB =5cm ,弦AB =6cm ,D 是的中点,则弦BD 的长度是11.设圆1O 与圆2O 的半径分别为3和2,124O O =,,A B 为两圆的交点,试求两圆的公共弦AB 的长度. 12.如图8,已知AP 是⊙O 的切线,P 为切点,AC 是 ⊙O 的割线,与⊙O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(1)证明AP O M ,,,四点共圆; (2)求OAM APM ∠+∠的大小.13.如图9,已知:C 是以AB 为直径的半圆O 上一点, CH⊥AB 于点H ,直线AC 与过B 点的切线相交于点 D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直 线CF 交直线AB(1)求证:点F (2)求证:CG(3)若FB=FE=2,求⊙O 的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OE BE (2)∵OE∥AD,∴AD=AB. OE AE 由(1)知BC =AB. OE OE BE AE BE+AE ∴AD+ BC=AB+AB= AB =1. 2OE 2OE OE OE (3)证明:由(2)知AD+BC =1,∴ AD + BC =2. 1 1 2 EF EF 又 EF=2OE,∴AD+BC=2,∴AD+BC=EF.
•失误与防范 (1)关于直角三角形射影定理 ①射影定理的两个条件:一是直角三角形;二是斜边上的 高,二者缺一不可. ②应用射影定理可求直角三角形的边长、面积等有关量, 同时还可用于研究相似问题,比例式等问题. (2)在应用平行截割定理时,一定要注意对应线段成比例. (3)在解决相似三角形时,一定要注意对应角和对应边,否 则容易出错.
(2)推论:平行于三角形一边的直线截其他两边(或两边的 延长线),截得的对应线段成比例.如下图所示.
AD AE 在以上三种基本图形中,DE∥BC,有DB=EC.
(3)推论的逆定理:如果一条直线截三角形的两边(或两边 的延长线)所得的对应线段成比例,那么这条直线④ ________________________.
答案:7∶5
3.(2013· 揭阳质检)如图,在△ABC 中,DE∥BC,EF∥ CD,若 BC=3,DE=2,DF=1,则 BD 的长为__________, AB 的长为__________.
3 9 答案:2 2
点评: ①利用平行线分线段成比例定理来计算或证明,首先要观 察平行线组,再确定所截直线,进而确定比例线段及比例式, 同时注意合比性质、等比性质的运算. ②有时图形中没有平行线, 要添加辅助线, 构造相关图形, 创造可以形成比例式的条件,达到证明的目的.
如图所示,在△ABC 中,D 是 AC 的中点,E BF 是 BD 的中点,AE 交 BC 于 F,则FC的值为__________.
新题速递 1.(2013· 东莞模拟)如图,在△ABC 中,D 为 AC 边上一点, ∠DBC=∠A,BC= 6,AC=3,则 CD=__________.
答案:2
2.(2013· 广东调研)如图,在梯形 ABCD 中,AB∥CD,AB =4,CD=2,E,F 分别为 AD,BC 上点,且 EF=3,EF∥AB, 则梯形 ABFE 与梯形 EFCD 的面积比为__________.
点评:利用直角三角形的射影定理解决问题首先确定直角 边与其射影,再就是要善于将有关比例式进行适当的变形转 化,有时还要将等积式转化为比例式或将比例式转化为等积 式,并且注意射影定理的其他变式.
变式探究 3 在 Rt△ABC 中, ∠ACB=90° CD⊥AB 于点 , D,CD=2,BD=3,则 AC 的长为__________.
变式探究 1
解析: 过点 D 作 DM∥AF 交 BC 于点 M. ∵点 E 是 BD 的中点, ∴在△BDM 中,BF=FM, ∵点 D 是 AC 的中点, ∴在△CAF 中,CM=MF, 1 BF BF ∴F定
例 2 如图所示,AE、AF 分别为△ABC 的内、外角平分线, O 为 EF 的中点. 求证:OB:OC=AB2:AC2.
证明: (1)在 Rt△ADC 和 Rt△BEC 中,∠C 为公共角. AD AC ∴Rt△ADC∽Rt△BEC,∴ BE =BC, ∴AD· BC=BE· AC. (2)在 Rt△BHD 和 Rt△AHE 中, ∵∠BHD=∠AHE, BH HD ∴Rt△BHD∽Rt△AHE,∴AH= HE . ∴AH· HD=BH· HE.
点评:利用三角形相似的判定定理来证明三角形相似,然 后由面积比等于相似比的平方这一性质来解题.所以并非见到 内外角平分线,就用角平分线定理.
变式探究 2 如图所示,已知 AD、BE 分别是△ABC 中 BC 边和 AC 边上的高,H 是 AD,BE 的交点,求证: (1)AD· BC=BE· AC; (2)AH· HD=BH· HE.
2.在 Rt△ABC 中,∠CAB=90° ,AD⊥BC 于 D,AB∶AC =3∶2,则 CD∶BD=__________.
解析:由△ABD∽△CBA 得 AB2=BD· BC. 由△ADC∽△BAC,得 AC2=DC· BC, CD· BC AC2 4 ∴BD· =AB2 =9. BC 即 CD∶BD=4∶9. 答案:4∶9
题型三
射影定理的应用
例 3 如图所示,已知 BD、CE 是△ABC 的两条高,过点 D 的直线交 BC 和 BA 的延长线于 G、H,交 CE 于 F,且∠H= ∠BCF.求证:GD2=GF· GH.
解析: ∵CE⊥AB,∴∠H+∠HFE=90° . 又∵∠BCF=∠H,∠HFE=∠CFG, ∴∠BCF+∠CFG=90° . ∴FG⊥GC,∴△BGH∽△FGC. BG GH ∴GF= GC,即 BG· GC=GF· GH. 又∵DG2=BG· GC(射影定理), ∴DG2=GF· GH.
选修4-1-1 相似三角形的判定及有关性质
考纲点击 了解平行线截割定理, 会证明并应用直角三角形射影定理.
说基础
课前预习读教材
考点梳理 1.平行线分线段成比例定理 (1)定理:三条平行线截两条直线,截得的对应线 段①__________.如图所示. l1∥l2∥l3,直线 a、b 与 l1、l2、l3 分别交于 A、B、 AB DE C、D、E、F,则BC= EF . AB DE AB BC 说明: 上图中, 除了BC= EF 外, 还有AC=②__________; = AC ③__________成立.
说考点
拓展延伸串知识
疑点清源 1.证明三角形相似的一般思路是: 先找两对内角对应相等; 若只找到一个角对应相等,再判定这个角的两邻边是否对应成 比例;若找不到角对应相等,就要证明三边对应成比例. 2.证明线段成比例,若已知条件中没有平行线,但有三 角形相似的条件(如角相等,有相等的比例式等),常考虑相似 三角形的性质构造比例或利用中间比求解. 3.已知条件中含有直角三角形,且涉及直角三角形斜边 上的高时,应首先考虑射影定理,注意射影定理与斜边的对应 关系,根据题目中的结论分析并选择射影定理中的等式,并分 清比例中项.
答案: ①成比例 DE ②DF EF ③DF ④平行于三角形的第三边
AB BD ⑤AC=DC ⑥AD· AB ⑦DB· AB ⑧AD· DB
考点自测
1.如图,DE∥BC,DF∥AC,AD=4 cm,BD=8 cm, DE=5 cm,则线段 BF 的长为__________.
解析:∵DE∥BC,DF∥AC, ∴四边形 DECF 是平行四边形. ∴FC=DE=5 cm. ∵DF∥AC, BF BD BF 8 ∴FC=DA,即 5 =4. ∴BF=10 cm. 答案:10 cm
解析:由∠B=∠D,AE⊥BC 及 AE AB ∠ACD=90° 可推得 Rt△ABE∽Rt△ADC,则AC=AD, 6×4 ∴AE= 12 =2. 答案:2
5.如图,正方形 ABCD 的边长为 4,P 为 AB 上的点,且 AP∶PB=1∶3,PQ⊥PC,则 PQ 的长为__________.
解析: ∵PQ⊥PC,∴∠APQ+∠BPC=90° . AP PQ ∴∠APQ=∠BCP.∴Rt△APQ∽Rt△PBC.∴BC= PC. ∵AB=4,AP∶PB=1∶3,∴PB=3,AP=1. AP· PC ∴PQ= BC . 5 2 2 2 又 PC = 3 +4 =5,∴PQ=4. 5 答案:4
3.如图,E 是▱ABCD 的边 AB 延长线上的一点,且 DC∶ BE=3∶2,则 AD∶BF=______.
DC DF 3 解析:由题可证得△BEF∽△CDF,∴ BE = EF =2. 5 AD DE DF ∴ BF = EF = EF +1=2. 答案:5∶2
4.如图,∠B=∠D,AE⊥BC,∠ACD=90° ,且 AB=6, AC=4,AD=12,则 AE=__________.
题型探究 题型一 平行线分线段成比例问题 例 1 如图,梯形 ABCD 中,AD∥BC,EF 经过梯形对角线 的交点 O,且 EF∥AD. (1)求证:OE=OF; OE OE (2)求AD+BC的值; 1 1 2 (3)求证:AD+BC=EF.
解析: (1)证明:∵EF∥AD,AD∥BC, ∴EF∥AD∥BC. OE AE OF DF ∵EF∥BC,∴ BC=AB, BC=DC. AE DF ∵EF∥AD∥BC,∴AB=DC. OE OF ∴BC = BC,∴OE=OF.
解析:如图所示,由射影定理得 CD2=AD· BD,∵CD=2,BD=3, 4 13 ∴AD=3,得 AB=AD+BD= 3 . 4 13 2 13 2 又 AC =AD· AB=3· ,∴AC= 3 . 3 2 13 答案: 3
归纳总结 •方法与技巧 相似三角形的判定定理的选择 (1)已知有一角相等时,可选择判定定理 1、2; (2)已知有两边对应成比例时,可选择判定定理 2、3; (3)判定直角三角形相似时, 首先看是否可以用判定直角三 角形的方法来判定,如不能再考虑用判定一般三角形相似的方 法来判定.
2.三角形内角平分线定理 三角形的内角平分线分对边所得的两条线段与这个角的 两边对应成比例.如图,在△ABC 中,AD 平分∠BAC,AD 交 BC 于点 D,则有⑤__________.
3.直角三角形的射影定理 (1)定理: 直角三角形的每一条直角边都是它在斜边上的射 影与斜边的比例中项,斜边上的高是两条直角边在斜边上射影 的比例中项. 如图,在△ABC 中,∠ACB=90° ,CD⊥AB 于 D,则 AC2=⑥________;BC2=⑦________;CD2=⑧________. (2)逆定理: 如果一个三角形一边上的高是另两边在这条边 上的射影的比例中项,那么这个三角形是直角三角形.
解析:∵AE,AF 为△ABC 的内、外角平分线, ∴AE⊥AF, 又∵O 为 EF 的中点,∴∠OEA=∠OAE. ∵∠OAE=∠CAE+∠OAC,∠OEA=∠B+∠BAE, 而∠BAE=∠CAE,∴∠OAC=∠B. ∵∠AOB 为公共角,∴△OAC∽△OBA. ∴S△OBA:S△OAC=AB2:AC2. 又∵△OAB 与△OCA 有一个公共边 OA. ∴S△OBA:S△OAC=OB:OC, ∴OB:OC=AB2:AC2.
相关文档
最新文档