全国高中数学联赛试题新规则和考试范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛
试题新规则和考试范围
目录
全国高中数学联赛试题新规则和考试范围 (1)
高中数学竞赛讲义(一) (4)
──集合与简易逻辑 (4)
高中数学精神讲义(二) (13)
──二次函数与命题 (13)
高中数学竞赛讲义(三) (20)
──函数 (20)
高中数学竞赛讲义(四) (28)
──几个初等函数的性质 (28)
高中数学竞赛讲义(五) (36)
──数列 (36)
高中数学竞赛讲义(六) (46)
──三角函数 (46)
高中数学竞赛讲义(七) (60)
──解三角形 (60)
高中数学竞赛讲义(八) (67)
──平面向量 (67)
高中数学竞赛讲义(八) (75)
──平面向量 (75)
高中数学竞赛讲义(九) (83)
──不等式 (83)
高中数学竞赛讲义(十) (94)
──直线与圆的方程 (94)
高中数学竞赛讲义(十一) (102)
──圆锥曲线 (102)
高中数学竞赛讲义(十一)答案 (114)
高中数学竞赛讲义(十二) (128)
──立体几何 (128)
高中数学竞赛讲义(十三) (138)
──排列组合与概率 (138)
高中数学竞赛讲义(十四) (148)
──极限与导数 (148)
高中数学竞赛讲义(十五) (158)
──复数 (158)
高中数学竞赛讲义(十六) (166)
──平面几何 (166)
高中数学竞赛讲义(十七) (171)
──整数问题 (171)
高中数学竞赛讲义(十八) (175)
──组合 (175)
运用米勒定理简解最大角问题 (178)
几个重要的特殊数列 (186)
等差数列与等比数列 (209)
不定方程 (228)
初等数论中的几个重要定理 (240)
同余 (248)
整数的性质及其应用(1) (260)
整数的性质及其应用(2) (272)
最大公约数与最小公倍数 (272)
整数的p进位制及其应用 (279)
函数的奇偶性与单调性 (285)
数形转换之一──借“数”解“形” (303)
数形转换之二──以“形”助“数” (313)
数形转换之三──借助图形直观,探索解题途径 (323)
全国高中数学联赛试题新规则和考试范围
──高中数学竞赛大纲(修订稿)
在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。
为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。
在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。
而“课堂教学为主,课外活动为辅”是必须遵循的原则。
因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
全国高中数学联赛试题新规则
联赛分为一试、加试(即俗称的“二试”)。
各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。
一试和加试均在每年10月中旬的第一个周日举行。
一试
考试时间为上午8:00-9:20,共80分钟。
试题分填空题和解答题两部分,满分120分。
其中填空题8道,每题8分;解答题3道,分别为16分、20分、20分。
(2009年的旧规则和2008年之前的旧规则略去。
)
加试(二试)
考试时间为9:40-12:10,共150分钟。
试题为四道解答题,前两道每题40分,后两道每题50分,满分180分。
试题内容涵盖平面几何、代数、数论、组合数学等。
(2009年的旧规则和2008年之前的旧规则略去。
)
依据考试结果评选出各省级赛区级一、二、三等奖。
其中一等奖由各省负责阅卷评分,然后讲一等奖的考卷寄送到主办方(当年的主办方),由主办方复评,最终由主管单位(中国科协)负责最终的评定并公布。
二、三等奖由各个省自己决定。
各省、市、自治区赛区一等奖排名靠前的同学可参加中国数学奥林匹克(IMO)。
根据最新消息,2011年数学联赛的试题规则与2010年相同。
考试范围
一试
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试
1.平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。
了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2.代数
在一试大纲的基础上另外要求的内容:
周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3.立体几何
多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4.平面解析几何
直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线和法线。
圆的幂和根轴。
5.其他
抽屉原理。
容斥原理。
极端原理。
集合的划分。
覆盖。
梅涅劳斯定理
托勒密定理
西姆松线的存在性及性质。
赛瓦定理及其逆定理。
高中数学竞赛讲义(一)
──集合与简易逻辑
一、基础知识
定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,
如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B 的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,
定义4 并集,
定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合
记作闭区间,R记作
定理1 集合的性质:对任意集合A,B,C,有:
(1)(2);
(3)(4)
【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即
;反之,,则或,即且
或,即且,即
(3)若,则或,所以或,所以,又,所以,即,反之也有
定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不
同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,
第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题
1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:
(1);
(2);
(3)若,则
[证明](1)因为,且,所以
(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以
(3)设,则
(因为)。
2.利用子集的定义证明集合相等,先证,再证,则A=B。
例2 设A,B是两个集合,又设集合M满足
,求集合M(用A,B表示)。
【解】先证,若,因为,所以,所以;
再证,若,则1)若,则;2)若,则。
所以
综上,
3.分类讨论思想的应用。
例3 ,若
,求
【解】依题设,,再由解得或,
因为,所以,所以,所以或2,所以或3。
因为,所以,若,则,即,若,则或,解得
综上所述,或;或。
4.计数原理的应用。
例4 集合A,B,C是I={1,2,3,4,5,6,7,8,9,0}的子集,(1)若,求有序集合对(A,B)的个数;(2)求I的非空真子集的个数。
【解】(1)集合I可划分为三个不相交的子集;A\B,B\A,中的每个元素恰属于其中一个子
集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。
(2)I的子集分三类:空集,非空真子集,集合I本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有
个,非空真子集有1022个。
5.配对方法。
例5 给定集合的个子集:,满足任何两个子集的交集非空,并且再添加I的任何一个其他子集后将不再具有该性质,求的值。
【解】将I的子集作如下配对:每个子集和它的补集为一对,共得对,每一对不能同在这个子集中,因此,;其次,每一对中必有一个在这个子集中出现,否则,若有一对子集未出现,设为C1A与A,并设,则,从而可以在个子集中再添加,与已知矛盾,所以。
综上,。
6.竞赛常用方法与例问题。
定理4 容斥原理;用表示集合A的元素个数,则
,需要xy此结论可以推广到个
集合的情况,即
定义8 集合的划分:若,且,则这些子集的全集叫I的一个-划分。
定理5 最小数原理:自然数集的任何非空子集必有最小数。
定理6 抽屉原理:将个元素放入个抽屉,必有一个抽屉放有不少于个元素,也
必有一个抽屉放有不多于个元素;将无穷多个元素放入个抽屉必有一个抽屉放有无穷多个元素。
例6 求1,2,3,…,100中不能被2,3,5整除的数的个数。
【解】记,
,由容斥原理,
,所以不能被2,3,5整除的数有个。
例7 S是集合{1,2,…,2004}的子集,S中的任意两个数的差不等于4或7,问S中最多含有多少个元素?
【解】将任意连续的11个整数排成一圈如右图所示。
由题目条件可知每相邻两个数至多有一个属于S,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S至多含有其中5个数。
又因为2004=182×11+2,所以S一共至多
含有182×5+2=912个元素,另一方面,当时,恰有
,且S满足题目条件,所以最少含有912个元素。
例8求所有自然数,使得存在实数满足:
【解】当时,;当时,;当时,。
下证当时,不存在满足条件。
令,则
所以必存在某两个下标,使得,所以或
,即,所以或,。
(ⅰ)若,考虑,有或,即,设,则,导致矛盾,故只有
考虑,有或,即,设,则
,推出矛盾,设,则,又推出矛盾,所以故当时,不存在满足条件的实数。
(ⅱ)若,考虑,有或,即,这时,推出矛盾,故。
考虑,有或,即
=3,于是,矛盾。
因此,所以,这又矛盾,所
以只有,所以。
故当时,不存在满足条件的实数。
例9 设A={1,2,3,4,5,6},B={7,8,9,……,n},在A中取三个数,B中取两个数组成五个元素的集合,求的最小值。
【解】
设B中每个数在所有中最多重复出现次,则必有。
若不然,数出现次(),则在出现的所有中,至少有一个A中的数出现3次,不妨设它是1,就有集合{1,}
,其中,为满足题意的集合。
必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以
20个中,B中的数有40个,因此至少是10个不同的,所以。
当时,如下20个集合满足要求:
{1,2,3,7,8},{1,2,4,12,14},{1,2,5,15,16},{1,2,6,9,10},
{1,3,4,10,11},{1,3,5,13,14},{1,3,6,12,15},{1,4,5,7,9},
{1,4,6,13,16},{1,5,6,8,11},{2,3,4,13,15},{2,3,5,9,11},
{2,3,6,14,16},{2,4,5,8,10},{2,4,6,7,11},{2,5,6,12,13},
{3,4,5,12,16},{3,4,6,8,9},{3,5,6,7,10},{4,5,6,14,15}。
例10 集合{1,2,…,3n}可以划分成个互不相交的三元集合,其中,求满足条件的最小正整数
【解】设其中第个三元集为则1+2+…+
所以。
当为偶数时,有,所以,当为奇数时,有,所以,当时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以的最
小值为5。
三、基础训练题
1.给定三元集合,则实数的取值范围是___________。
2.若集合中只有一个元素,则=___________。
3.集合的非空真子集有___________个。
4.已知集合,若,则由满足条件的实数组成的集合P=___________。
5.已知,且,则常数的取值范围是___________。
6.若非空集合S满足,且若,则,那么符合要求的集合S有___________个。
7.集合之间的关系是___________。
8.若集合,其中,且,若,则A中元素之和是___________。
9.集合,且,则满足条件的值构成的集合为___________。
10.集合,则
___________。
11.已知S是由实数构成的集合,且满足1))若,则。
如果,S中至少含有多少个元素?说明理由。
12.已知,又C为单元素集合,求实数的取值范围。
四、高考水平训练题
1.已知集合,且A=B,则___________,___________。
2.
,则___________。
3.已知集合,当时,实数的取值范围是___________。
4.若实数为常数,且___________。
5.集合,若,则___________。
6.集合,则中的最小元素是
___________。
7.集合,且A=B,则___________。
8.已知集合,且,则的取值范围是___________。
9.设集合,问:
是否存在,使得,并证明你的结论。
10.集合A和B各含有12个元素,含有4个元素,试求同时满足下列条件的集合C的个数:1)且C中含有3个元素;2)。
11.判断以下命题是否正确:设A,B是平面上两个点集,,若对任何,
都有,则必有,证明你的结论。
五、联赛一试水平训练题
1.已知集合,则实数的取值范围是
___________。
2.集合的子集B满足:对任意的,则集合B中元素个数的最大值是___________。
3.已知集合,其中,且,若P=Q,则实数
___________。
4.已知集合,若是平面上正八边形的顶点所构成的集合,则___________。
5.集合,集合,则集合M与N的关系是___________。
6.设集合,集合A满足:,且当时,,则A中元素最多有___________个。
7.非空集合,≤则使成立的所有的集合是___________。
8.已知集合A,B,aC(不必相异)的并集,则满足条件的有序三元组(A,B,C)个数是___________。
9.已知集合,问:当取何
值时,为恰有2个元素的集合?说明理由,若改为3个元素集合,结论如何?
10.求集合B和C,使得,并且C的元素乘积等于B的元素和。
11.S是Q的子集且满足:若,则恰有一个成立,并且若,则
,试确定集合S。
12.集合S={1,2,3,4,5,6,7,8,9,0}的若干个五元子集满足:S中的任何两个元素至多出现在两个不同的五元子集中,问:至多有多少个五元子集?
六、联赛二试水平训练题
1.是三个非空整数集,已知对于1,2,3的任意一个排列,如果,,则。
求证:中必有两个相等。
2.求证:集合{1,2,…,1989}可以划分为117个互不相交的子集,使得(1)每
个恰有17个元素;(2)每个中各元素之和相同。
3.某人写了封信,同时写了个信封,然后将信任意装入信封,问:每封信都装错的情况有多少种?
4.设是20个两两不同的整数,且整合中有201个不同的元素,求集合中不同元素个数的最小可能值。
5.设S是由个人组成的集合。
求证:其中必定有两个人,他们的公共朋友的个数为偶数。
6.对于整数,求出最小的整数,使得对于任何正整数,集合的任一个元子集中,均有至少3个两两互质的元素。
7.设集合S={1,2,…,50},求最小自然数,使S的任意一个元子集中都存在两个不同的数a和b,满足。
8.集合,试作出X的三元子集族&,满足:
(1)X的任意一个二元子集至少被族&中的一个三元子集包含;
(2)。
9.设集合,求最小的正整数,使得对A的任意一个14-分划,一定存在某个集合,在中有两个元素a和b满足。
高中数学精神讲义(二)
──二次函数与命题
一、基础知识
1.二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,
另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。
2.二次函数的性质:当a>0时,f(x)的图象开口向上,在区间(-∞,x0]上随自变量x增大函数值减小(简称递减),在[x0, -∞)上随自变量增大函数值增大(简称递增)。
当a<0时,情况相反。
3.当a>0时,方程f(x)=0即ax2+bx+c=0…①和不等式ax2+bx+c>0…②及ax2+bx+c<0…③与函数f(x)的关系如下(记△=b2-4ac)。
1)当△>0时,方程①有两个不等实根,设x1,x2(x1<x2),不等式②和不等式③的解集分别是{x|x<x1或x>x2}和{x|x1<x<x2},二次函数f(x)图象与x轴有两个不同的交点,f(x)还可写成f(x)=a(x-x1)(x-x2).
2)当△=0时,方程①有两个相等的实根x1=x2=x0=,不等式②和不等式③的解集分别是{x|x}和空集,f(x)的图象与x轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R和.f(x)图象与x轴无公共点。
当a<0时,请读者自己分析。
4.二次函数的最值:若a>0,当x=x0时,f(x)取最小值f(x0)=,若a<0,则当x=x0=时,
f(x)取最大值f(x0)=.对于给定区间[m,n]上的二次函数f(x)=ax2+bx+c(a>0),当x0∈[m, n]时,f(x)在[m,
n]上的最小值为f(x0); 当x0<m时。
f(x)在[m, n]上的最小值为f(m);当x0>n时,f(x)在[m, n]上的最小值为f(n)(以上结论由二次函数图象即可得出)。
定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题。
不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。
注1 “p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。
定义2 原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。
注2 原命题与其逆否命题同真假。
一个命题的逆命题和否命题同真假。
注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。
定义3 如果命题“若p则q”为真,则记为p q否则记作p q.在命题“若p则q”中,如果已知p q,则p是q的充分条件;如果q p,则称p是q的必要条件;如果p q但q不p,则称p是q的充分非必要条件;如果p不q但p q,则p称为q的必要非充分条件;若p q且q p,则p是q的充要条件。
二、方法与例题
1.待定系数法。
例1 设方程x2-x+1=0的两根是α,β,求满足f(α)=β,f(β)=α,f(1)=1的二次函数f(x).
【解】设f(x)=ax2+bx+c(a0),
则由已知f(α)=β,f(β)=α相减并整理得(α-β)[(α+β)a+b+1]=0,
因为方程x2-x+1=0中△0,
所以αβ,所以(α+β)a+b+1=0.
又α+β=1,所以a+b+1=0.
又因为f(1)=a+b+c=1,
所以c-1=1,所以c=2.
又b=-(a+1),所以f(x)=ax2-(a+1)x+2.
再由f(α)=β得aα2-(a+1)α+2=β,
所以aα2-aα+2=α+β=1,所以aα2-aα+1=0.
即a(α2-α+1)+1-a=0,即1-a=0,
所以a=1,
所以f(x)=x2-2x+2.
2.方程的思想。
例2 已知f(x)=ax2-c满足-4≤f(1)≤-1, -1≤f(2)≤5,求f(3)的取值范围。
【解】因为-4≤f(1)=a-c≤-1,
所以1≤-f(1)=c-a≤4.
又-1≤f(2)=4a-c≤5, f(3)=f(2)-f(1),
所以×(-1)+≤f(3)≤×5+×4,
所以-1≤f(3)≤20.
3.利用二次函数的性质。
例3 已知二次函数f(x)=ax2+bx+c(a,b,c∈R, a0),若方程f(x)=x无实根,求证:方程f(f(x))=x也无实根。
【证明】若a>0,因为f(x)=x无实根,所以二次函数g(x)=f(x)-x图象与x轴无公共点且开口向上,所以对任意的x∈R,f(x)-x>0即f(x)>x,从而f(f(x))>f(x)。
所以f(f(x))>x,所以方程f(f(x))=x无实根。
注:请读者思考例3的逆命题是否正确。
4.利用二次函数表达式解题。
例4 设二次函数f(x)=ax2+bx+c(a>0),方程f(x)=x的两根x1, x2满足0<x1<x2<,
(Ⅰ)当x∈(0, x1)时,求证:x<f(x)<x1;
(Ⅱ)设函数f(x)的图象关于x=x0对称,求证:x0<
【证明】因为x1, x2是方程f(x)-x=0的两根,所以f(x)-x=a(x-x1)(x-x2),
即f(x)=a(x-x1)(x-x2)+x.
(Ⅰ)当x∈(0, x1)时,x-x1<0, x-x2<0, a>0,所以f(x)>x.
其次f(x)-x1=(x-x1)[a(x-x2)+1]=a(x-x1)[x-x2+]<0,所以f(x)<x1.
综上,x<f(x)<x1.
(Ⅱ)f(x)=a(x-x1)(x-x2)+x=ax2+[1-a(x1+x2)]x+ax1x2,
所以x0=,
所以,
所以
5.构造二次函数解题。
例5 已知关于x的方程(ax+1)2=a2(a-x2), a>1,求证:方程的正根比1小,负根比-1大。
【证明】方程化为2a2x2+2ax+1-a2=0.
构造f(x)=2a2x2+2ax+1-a2,
f(1)=(a+1)2>0, f(-1)=(a-1)2>0, f(0)=1-a2<0, 即△>0,
所以f(x)在区间(-1,0)和(0,1)上各有一根。
即方程的正根比1小,负根比-1大。
6.定义在区间上的二次函数的最值。
例6 当x取何值时,函数y=取最小值?求出这个最小值。
【解】y=1-,令u,则0<u≤1。
y=5u2-u+1=5,
且当即x=3时,y m in=.
例7 设变量x满足x2+bx≤-x(b<-1),并且x2+bx的最小值是,求b的值。
【解】由x2+bx≤-x(b<-1),得0≤x≤-(b+1).
ⅰ)-≤-(b+1),即b≤-2时,x2+bx的最小值为-,所以b2=2,所以(舍去)。
ⅱ) ->-(b+1),即b>-2时,x2+bx在[0,-(b+1)]上是减函数,
所以x2+bx的最小值为b+1,b+1=-,b=-.
综上,b=-.
7.一元二次不等式问题的解法。
例8 已知不等式组①②的整数解恰好有两个,求a的取值范围。
【解】因为方程x2-x+a-a2=0的两根为x1=a, x2=1-a,
若a≤0,则x1<x2.①的解集为a<x<1-a,由②得x>1-2a.
因为1-2a≥1-a,所以a≤0,所以不等式组无解。
若a>0,ⅰ)当0<a<时,x1<x2,①的解集为a<x<1-a.
因为0<a<x<1-a<1,所以不等式组无整数解。
ⅱ)当a=时,a=1-a,①无解。
ⅲ)当a>时,a>1-a,由②得x>1-2a,
所以不等式组的解集为1-a<x<a.
又不等式组的整数解恰有2个,
所以a-(1-a)>1且a-(1-a)≤3,
所以1<a≤2,并且当1<a≤2时,不等式组恰有两个整数解0,1。
综上,a的取值范围是1<a≤2.
8.充分性与必要性。
例9 设定数A,B,C使得不等式
A(x-y)(x-z)+B(y-z)(y-x)+C(z-x)(z-y)≥0 ①
对一切实数x,y,z都成立,问A,B,C应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A,B,C的等式或不等式表示条件)
【解】充要条件为A,B,C≥0且A2+B2+C2≤2(AB+BC+CA).
先证必要性,①可改写为A(x-y)2-(B-A-C)(y-z)(x-y)+C(y-z)2≥0 ②
若A=0,则由②对一切x,y,z∈R成立,则只有B=C,再由①知B=C=0,若A0,则因为②恒成立,所以A>0,△=(B-A-C)2(y-z)2-4AC(y-z)2≤0恒成立,所以(B-A-C)2-4AC≤0,即A2+B2+C2≤2(AB+BC+CA) 同理有B≥0,C≥0,所以必要性成立。
再证充分性,若A≥0,B≥0,C≥0且A2+B2+C2≤2(AB+BC+CA),
1)若A=0,则由B2+C2≤2BC得(B-C)2≤0,所以B=C,所以△=0,所以②成立,①成立。
2)若A>0,则由③知△≤0,所以②成立,所以①成立。
综上,充分性得证。
9.常用结论。
定理1 若a, b∈R, |a|-|b|≤|a+b|≤|a|+|b|.
【证明】因为-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,
所以|a+b|≤|a|+|b|(注:若m>0,则-m≤x≤m等价于|x|≤m).
又|a|=|a+b-b|≤|a+b|+|-b|,
即|a|-|b|≤|a+b|.综上定理1得证。
定理2 若a,b∈R, 则a2+b2≥2ab;若x,y∈R+,则x+y≥
(证略)
注定理2可以推广到n个正数的情况,在不等式证明一章中详细论证。
三、基础训练题
1.下列四个命题中属于真命题的是________,①“若x+y=0,则x、y互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q≤1,则x2+x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题。
2.由上列各组命题构成“p或q”,“p且q”,“非p”形式的复合命题中,p或q为真,p且q为假,非p为真的是_________.①p;3是偶数,q:4是奇数;②p:3+2=6,q:③p:a∈(a,b),q:{a}{a,b}; ④p: Q R, q: N=Z.
3. 当|x-2|<a时,不等式|x2-4|<1成立,则正数a的取值范围是________.
4. 不等式ax2+(ab+1)x+b>0的解是1<x<2,则a, b的值是____________.
5. x1且x2是x-1的__________条件,而-2<m<0且0<n<1是关于x的方程x2+m x+n=0有两个小于1的正根的__________条件.
6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.
7.若S={x|m x2+5x+2=0}的子集至多有2个,则m的取值范围是_________.
8. R为全集,A={x|3-x≥4}, B=, 则(C R A)∩B=_________.
9. 设a, b是整数,集合A={(x,y)|(x-a)2+3b≤6y},点(2,1)∈A,但点(1,0)A,(3,2)A则a,b的值是_________.
10.设集合A={x||x|<4}, B={x|x2-4x+3>0},则集合{x|x∈A且x A∩B}=_________.
11. 求使不等式ax2+4x-1≥-2x2-a对任意实数x恒成立的a的取值范围。
12.对任意x∈[0,1],有①②成立,求k的取值范围。
四、高考水平训练题
1.若不等式|x-a|<x的解集不空,则实数a的取值范围是_________.
2.使不等式x2+(x-6)x+9>0当|a|≤1时恒成立的x的取值范围是_________.
3.若不等式-x2+kx-4<0的解集为R,则实数k的取值范围是_________.
4.若集合A={x||x+7|>10}, B={x||x-5|<k},且A∩B=B,则k的取值范围是_________.
5.设a1、a2, b1、b2, c1、c2均为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0解集分别为M和N,那么“”是“M=N”的_________条件。
6.若下列三个方程x2+4ax-4a+3=0, x2+(a-1)x+a2=0, x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是_________.
7.已知p, q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的_________条件。
8.已知p: |1-|≤2, q: x2-2x+1-m2≤0(m>0),若非p是非q的必要不充分条件,则实数m的取值范
围是_________.
9.已知a>0,f(x)=ax2+bx+c,对任意x∈R有f(x+2)=f(2-x),若f(1-2x2)<f(1+2x-x2),求x的取值范围。
10.已知a, b, c∈R, f(x)=ax2+bx+c, g(x)=ax+b, 当|x|≤1时,|f(x)|≤1,
(1)求证:|c|≤1;
(2)求证:当|x|≤1时,|g(x)|≤2;
(3)当a>0且|x|≤1时,g(x)最大值为2,求f(x).
11.设实数a,b,c,m满足条件:=0,且a≥0,m>0,求证:方程ax2+bx+c=0有一根x0
满足0<x0<1.
五、联赛一试水平训练题
1.不等式|x|3-2x2-4|x|+3<0的解集是_________.
2.如果实数x, y满足:,那么|x|-|y|的最小值是_________.
3.已知二次函数f(x)=ax2+bx+c的图象经过点(1,1),(3,5),f(0)>0,当函数的最小值取最大值时,a+b2+c3=_________.
4. 已知f(x)=|1-2x|, x∈[0,1],方程f(f(f)(x)))=x有_________个实根。
5.若关于x的方程4x2-4x+m=0在[-1,1]上至少有一个实根,则m取值范围是_________.
6.若f(x)=x4+px3+qx2+x对一切x∈R都有f(x)≥x且f(1)=1,则p+q2=_________.
7. 对一切x∈R,f(x)=ax2+bx+c(a<b)的值恒为非负实数,则的最小值为_________.
8.函数f(x)=ax2+bx+c的图象如图,且=b-2ac. 那么b2-4ac_________4. (填>、=、<)
9.若a<b<c<d,求证:对任意实数t-1, 关于x的方程(x-a)(x-c)+t(x-b)(x-d)=0都有两个不等的实根。
10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x的系数等于较小的根,二次项系数都是1。
证明:这种练习不可能无限次继续下去,并求最多能延续的次数。
11.已知f(x)=ax2+bx+c在[0,1]上满足|f(x)|≤1,试求|a|+|b|+|c|的最大值。
六、联赛二试水平训练题
1.设f(x)=ax2+bx+c,a,b,c∈R, a>100,试问满足|f(x)|≤50的整数x最多有几个?
2.设函数f(x)=ax2+8x+3(a<0),对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5都成立。
求l(a)的最大值及相应a的值。