数学22.9《平面图形的镶嵌》课件2(冀教版八年级下)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.9 • 平面图形的镶嵌
好漂亮的地板!这 是怎么铺设的?一点空 隙也没有.
我们经常能见到各种建筑物的地 板,观察地板,就能发现地板常用各 种正多边形地砖铺砌成美丽的图案
用一些形状、大小完全相 同的一种或几种平面图形进行 拼接,彼此之间不留空隙,不 重叠地把平面的一部分完全覆 盖,这就是平面图形的镶 嵌.(也叫平面图形的密铺)
∠1+∠2+∠3=?
(4)用边长相同的正六边形能否镶嵌? 结论:用边长相同的正六边形可以镶嵌
பைடு நூலகம்一想
镶嵌平面图案需要的什么条件?
拼接在同一个点的各个角的和 恰好等于360度
13 2
要用几个形状、大小完全相同 的图形不留空隙、不重叠地镶 嵌一个平面,需使得拼接点处 的各角之和为360°.
你还能找到能镶嵌的其他正多边形吗?
要用正多边形镶嵌成一个平面的关键是看:这 种正多边形的一个内角的倍数是否是360°, 在正多边形里,正三角形的每个内角都是 60°,正四边形的每个内角都是90°,正六 边形的每个内角都是120°,这三种多边形的 一个内角的倍数都是360°,而其他的正多边 形的每个内角的倍数都不是360°,所以说: 在正多边形里只有正三角形、正四边形、正六 边形可以镶嵌,而其他的正多边形不可镶嵌.
想做一做
剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
问题 剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它 们能否镶嵌成平面图案?
问题
如果用其中两种正多变形镶嵌,哪 两种正多变形能镶嵌成平面图案?
我们可以利用多边形设计一些美丽的 图案.
2
1
3
3
4 13
注意:各种图形拼接后要既 无缝隙,又不重叠
利用镶嵌可以得到一些绚丽多彩的图案
(1)用边长相同的正三角形能否镶嵌?
结论:用边长相同的正三角形可以镶嵌
(2)用边长相同的正方形能否镶嵌? 结论:用边长相同的正方形可以镶嵌
(3)用边长相同的正五边形能否镶嵌?
啊!拼不了啦,
13
为什么呢?你
2
能说说道理吗?
注意:只用正五边形、正八边 形一种图形不能镶嵌.
课堂小结
本节课我们通过活动,探讨,知道任 意一个三角形,四边形或正六边形可 以镶嵌成一个平面,并且探索出正多 边形镶嵌的条件.即:一种正多边形 的一个内角的倍数是否是360°
作业: 请同学搜集一些平面镶嵌图案,
用硬纸片做出其中的一二个模型.
2
3
问题
单独用同一种平面图 形如果不能镶嵌,用两种 或者两种以上平面图形能 不能镶嵌呢?
能
例如正五边形和正八边形它们
单独用同一种不能镶嵌,但与三角形、
四边形就能镶嵌成平面图案.
归纳:
1、拼接在同一个点的各个角 的和等于360度
2、任意三角形一定可以镶嵌.
3、任意四边形一定可以镶嵌 4、正六边形可以镶嵌.
Shuxue
小结
下课
台州市书生中学朱仁江制作
好漂亮的地板!这 是怎么铺设的?一点空 隙也没有.
我们经常能见到各种建筑物的地 板,观察地板,就能发现地板常用各 种正多边形地砖铺砌成美丽的图案
用一些形状、大小完全相 同的一种或几种平面图形进行 拼接,彼此之间不留空隙,不 重叠地把平面的一部分完全覆 盖,这就是平面图形的镶 嵌.(也叫平面图形的密铺)
∠1+∠2+∠3=?
(4)用边长相同的正六边形能否镶嵌? 结论:用边长相同的正六边形可以镶嵌
பைடு நூலகம்一想
镶嵌平面图案需要的什么条件?
拼接在同一个点的各个角的和 恰好等于360度
13 2
要用几个形状、大小完全相同 的图形不留空隙、不重叠地镶 嵌一个平面,需使得拼接点处 的各角之和为360°.
你还能找到能镶嵌的其他正多边形吗?
要用正多边形镶嵌成一个平面的关键是看:这 种正多边形的一个内角的倍数是否是360°, 在正多边形里,正三角形的每个内角都是 60°,正四边形的每个内角都是90°,正六 边形的每个内角都是120°,这三种多边形的 一个内角的倍数都是360°,而其他的正多边 形的每个内角的倍数都不是360°,所以说: 在正多边形里只有正三角形、正四边形、正六 边形可以镶嵌,而其他的正多边形不可镶嵌.
想做一做
剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
问题 剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它 们能否镶嵌成平面图案?
问题
如果用其中两种正多变形镶嵌,哪 两种正多变形能镶嵌成平面图案?
我们可以利用多边形设计一些美丽的 图案.
2
1
3
3
4 13
注意:各种图形拼接后要既 无缝隙,又不重叠
利用镶嵌可以得到一些绚丽多彩的图案
(1)用边长相同的正三角形能否镶嵌?
结论:用边长相同的正三角形可以镶嵌
(2)用边长相同的正方形能否镶嵌? 结论:用边长相同的正方形可以镶嵌
(3)用边长相同的正五边形能否镶嵌?
啊!拼不了啦,
13
为什么呢?你
2
能说说道理吗?
注意:只用正五边形、正八边 形一种图形不能镶嵌.
课堂小结
本节课我们通过活动,探讨,知道任 意一个三角形,四边形或正六边形可 以镶嵌成一个平面,并且探索出正多 边形镶嵌的条件.即:一种正多边形 的一个内角的倍数是否是360°
作业: 请同学搜集一些平面镶嵌图案,
用硬纸片做出其中的一二个模型.
2
3
问题
单独用同一种平面图 形如果不能镶嵌,用两种 或者两种以上平面图形能 不能镶嵌呢?
能
例如正五边形和正八边形它们
单独用同一种不能镶嵌,但与三角形、
四边形就能镶嵌成平面图案.
归纳:
1、拼接在同一个点的各个角 的和等于360度
2、任意三角形一定可以镶嵌.
3、任意四边形一定可以镶嵌 4、正六边形可以镶嵌.
Shuxue
小结
下课
台州市书生中学朱仁江制作