《三角形的内角和》教学反思(精选3篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的内角和》教学反思(精选3篇)
《三角形的内角和》教学反思篇一
在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。
虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。
但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。
本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的'学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的空间去探究出结论。
学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。
方法不是唯一的,对于学生通过独立思考出来的解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。
在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。
如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。
而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。
”这一结论,并大胆猜测推算出长方形和正方形的内角和。
《三角形的内角和》教学反思篇二
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。
上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。
因此接着就让学生讨论:有什么办法可以验证得出这样的结论。
学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。
科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。
逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。
但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。
鼓励学生亲自动手操作验证猜想。
为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。
但在分组活动中,我更注意解决学生活动中遇到了问题的解决,
比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。
学生观察能力得到了培养。
再比如说折,有的学生就是折不好,因为那第一折有一定的`难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。
教师也要走上前去点拨一下。
再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。
做到了“扶”而不死,“伴”而有度,“放”而不乱。
我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。
使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。
这道题有助于帮助学生解决三角形按角分的定义的理解。
第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。
同时加深了学生对等边三角形的特点的认识和理解。
第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
《三角形的内角和》教学反思篇三
探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。
一、“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。
”我记不清这是谁说过的话,但它给我留下深刻的印象。
“是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。
通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。
首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。
再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。
通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。
接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的大小如何变化,它的内角和是不变的。
通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。
同学们通过自主实践、合作探究完成了本节课的教学任务。
二、练习设计,由易到难。
在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。
第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。
第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。
练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
三、发挥多媒体的教学辅助作用
在用“折”的方法验证三角形内角和是180度时,虽然发言的学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。
准确地找到三角形的中位线,使折纸的。
关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。
针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。
让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。
另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。
四、存在的不足
在教学中只是让学生体验到各种类型的三角形和大小不同的三角形基本图形的内角和等于180度,在一些练习中出现了求变化得到的三形内角和时出现了认知的盲点,如,如两个完全一样的小三角形拼成一个大三形角形内角和等于多少?还有部分学生出现等于360度的现象,这些如能在课堂上让学生练习,学生对于三内角形内角和的性质的认识会更深入。
读书破万卷,下笔如有神。
上面的3篇《三角形的内角和》教学反思是由精心整理的三角形的内角和教学反思范文范本,感谢您的阅读与参考。