人教中考数学压轴题专题复习——一元二次方程的综合含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
【答案】经过2秒后△PBQ的面积等于4cm2.
【解析】
【分析】
作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=1
2
×PB×QE,有P、Q点的移动速
度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】
解:
如图,
过点Q作QE⊥PB于E,则∠QEB=90°.
∵∠ABC=30°,
∴2QE=QB.
∴S△PQB=1
2
•PB•QE.
设经过t秒后△PBQ的面积等于4cm2,
则PB=6﹣t,QB=2t,QE=t.
根据题意,1
2
•(6﹣t)•t=4.
t2﹣6t+8=0.
t2=2,t2=4.
当t=4时,2t=8,8>7,不合题意舍去,取t=2.
答:经过2秒后△PBQ的面积等于4cm2.
【点睛】
本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.
2.已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
【答案】(1)k>3
4
;(2)15.
【解析】
【分析】
(1)根据关于x的方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;
(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,则矩形的对角线长为22
m n
+,利用完全平方公式进行变形即可求得答案.
【详解】
(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,
∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,
∴k>3
4
;
(2)当k=2时,原方程为x2-5x+5=0,
设方程的两个根为m,n,
∴m+n=5,mn=5,
∴矩形的对角线长为:()2
22215
m n m n mn
+=+-=.
【点睛】
本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.
3.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)求a的取值范围;
(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.
【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.
【解析】
【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)
根据根与系数的关系可得x1+x2=﹣
2
6
a
a+
,x1x2=
6
a
a+
,由(x1+1)(x2+1)=x1x2+x1+x2+1=
﹣
6
6
a-
是是负整数,即可得
6
6
a-
是正整数.根据a是整数,即可求得a的值2.
【详解】
(1)∵原方程有两实数根,∴,
∴a≥0且a≠6.
(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,
∴x 1+x 2=﹣,x 1x 2=,
∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣. ∵(x 1+1)(x 2+1)是负整数,
∴﹣是负整数,即是正整数.
∵a 是整数,
∴a ﹣6的值为1、2、3或6,
∴a 的值为7、8、9或12.
【点睛】
本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.
4.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x 2﹣7x+10=0
a=1 b=﹣7 c=10
∵b 2﹣4ac=9>0
∴x=2b b 4ac 2a
--=732± ∴x 1=5,x 2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+
m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长;
(2)当△ABC 为等边三角形时,求m 的值.
【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为
72
;(2)当△ABC 为等边三角形时,m 的值为1.
【解析】
【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.
(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣
m )2﹣4(m 2﹣14
)=m 2﹣2m+1,可求得m. 【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5. 错误原因:此时不能构成三角形.
(1)当m=2时,方程为x 2﹣2x+
34=0, ∴x 1=
12,x 2=32. 当
12为腰时,12+12<32, ∴
12、12、32不能构成三角形; 当32为腰时,等腰三角形的三边为32、32、12
, 此时周长为32+32+12=72
. 答:当m=2时,△ABC 的周长为
72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根,
∴△=(﹣m )2﹣4(
m 2﹣14
)=m 2﹣2m+1=0, ∴m 1=m 2=1.
答:当△ABC 为等边三角形时,m 的值为1.
【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.
5.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.
(1)当a=﹣11时,解这个方程;
(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;
(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.
【答案】(1)123,4x x =-=(2)54
a ≤(3)-4
【解析】
分析:(1)根据一元二次方程的解法即可求出答案;
(2)根据判别式即可求出a 的范围;
(3)根据根与系数的关系即可求出答案.
详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;
(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得
54
a ≤:; (3)∵12x x ,是方程的两个实数根,
222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.
∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:
a =﹣4,a =2(舍去),所以a 的值为﹣4.
点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.
6.关于x 的方程(k -1)x 2+2kx+2=0
(1)求证:无论k 为何值,方程总有实数根.
(2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=
++ x 1+x 2,S 的值能为2吗?
若能,求出此时k 的值.若不能,请说明理由.
【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2.
【解析】
试题分析:(1) 本题二次项系数为(k -1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.
试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,
x=有一个解; ②当k-1≠0即k≠1时,方程为一元二次方程,
△=(2k )²-4×2(k-1)=4k²-8k +8="4(k-1)" ² +4>0
方程有两不等根
综合①②得不论k 为何值,方程总有实根
(2)∵x ₁+x ₂=
,x ₁ x ₂= ∴S=
++ x 1+x 2 =
=
=
=
=2k-2=2,
解得k=2, ∴当k=2时,S 的值为2
∴S 的值能为2,此时k 的值为2.
考点:一元二次方程根的判别式;根与系数的关系.
7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y
(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?
【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元
【解析】
【分析】
表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.
【详解】
设每天获得的利润为w 元,
根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.
∵a =﹣10<0,
∴当x =50时,w 取最大值,最大值为4000.
答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.
【点睛】
本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.
8.关于x 的一元二次方程ax 2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.
【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.
【解析】
【详解】
分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.
详解:(1)解:由题意:0a ≠.
∵()2
2242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.
(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:
解:令1a =,2b =-,则原方程为2210x x -+=,
解得:121x x ==.
点睛:考查一元二次方程()2
00++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.
当240b ac ∆=-=时,方程有两个相等的实数根.
当240b ac ∆=-<时,方程没有实数根.
9.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①
(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;
(2)对于任意实数m ,判断方程①的根的情况,并说明理由.
【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;
(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.
(1)把x=-1代入得1+m-2=0,解得m=1 ∴
2--2=0. ∴
∴另一根是2;
(2)∵
, ∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根
10.已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.
(1)求m 的取值范围;
(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.
【答案】(1)m≤4;(2)3≤m≤4.
【解析】
试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即可; (2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2
(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围. 试题解析:
(1)根据题意得△=(-6)2-4(2m +1)≥0,
解得m≤4;
(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,
而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3,
而m≤4,所以m的范围为3≤m≤4.。