尚店镇初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尚店镇初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。
2.(2分)下列说法中,不正确的个数有().
①所有的正数都是整数. ②一定是正数. ③无限小数一定是无理数.
④没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.
A. 3个
B. 4个
C. 5个
D. 6个
【答案】D
【考点】平方根,实数及其分类,有理数及其分类,无理数的认识
【解析】【解答】解:①如是正数,但不是整数,故①说法错误.
②当a=0时,,不是正数,故②说法错误.
③无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数是无理数,故③说法错误.
④的结果是正数,有平方根,故④说法错误.
⑤0既不是正数,也不是负数,故⑤说法错误.
⑥带根号且开不尽的数一定是无理数,故⑥说法错误.
故不正确的说法有6个.
故答案为:D.
【分析】本题主要考查有理数和无理数的相关定义,熟记以下几点:(1)实数包括有理数和无理数;(2)有理数包括正数(正整数和正分数)、0和负数(负整数、负分数);(3)无理数:无限不循环小数;(4)小
数分为:有限小数和无限小数(无限不循环小数,无限循环小数);(5)无限循环小数是有理数,无限不循环小数是无理数.
3.(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中,属于无理数的有:两个.
故答案为:B.
【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
4.(2分)在3.14,﹣,π,,﹣0.23,1.131331333133331…(每两个1之间依次多一个3)中,无理数的个数是()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】无理数的认识
【解析】【解答】解:无理数有:、π、1.131331333133331…(每两个1之间依次多一个3),一共有3个。
故答案为:C
【分析】根据无理数是无限不循环的小数,或开方开不尽的数,或有规律但不循环的数,即可解答。
5.(2分)的值为()
A. 5
B.
C. 1
D.
【答案】C
【考点】实数的运算
【解析】【解答】原式= =1.故答案为:C.
【分析】先比较与3、与2的大小,再根据绝对值的意义化简,最后运用实数的性质即可求解。
6.(2分)下列各式中正确的是()
A. B. C. D.
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A、,故A选项符合题意;
B、,故B选项不符合题意;
C、,故C选项不符合题意;
D、,故D选项不符合题意;
故答案为:A.
【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
7.(2分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。
现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则的值可能是()
A. 2013
B. 2014
C. 2015
D. 2016
【答案】C
【考点】二元一次方程组的其他应用
【解析】【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得
,
两式相加得,m+n=5(x+y),
∵x、y都是正整数,
∴m+n是5的倍数,
∵2013、2014、2015、2016四个数中只有2015是5的倍数,
∴m+n的值可能是2015.
故答案为:C.
【分析】根据正方形纸板的数量为m张,长方形纸板的数量为n张,设未知数,列方程组,求出m+n=5(x+y),再由x、y都是正整数,且m+n是5的倍数,分析即可得出答案。
8.(2分)当x=3时,下列不等式成立的是()
A.x+3>5
B.x+3>6
C.x+3>7
D.x+3<5
【答案】A
【考点】不等式的解及解集
【解析】【解答】解:A、当x=3时,x+3=3+3=6>5,所以x+3>5成立;
B、当x=3时,x+3=3+3=6,所以x+3>6不成立;
C、当x=3时,x+3=3+3=6<7,所以;x+3>7不成立;
D、当x=3时,x+3=3+3=6>5,所以x+3<5不成立.
故答案为:A
【分析】把x=3分别代入各选项中逐个进行判断即可。
9.(2分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOD=70°,则∠BOD的大小为()
A. 25°
B. 35°
C. 45°
D. 55°
【答案】D
【考点】角的平分线,对顶角、邻补角
【解析】【解答】解:∵∠EOD=70°,
∴∠EOC=180°﹣70°=110°,
∵OA平分∠EOC,
∴∠AOC= ∠EOC=55°,
∴∠BOD=∠AOC=55°;
故答案为:D.
【分析】根据邻补角的定义得出∠EOC的度数,再根据角平分线的定义得出∠AOC= ∠EOC=55°,根据对顶角相等即可得出答案。
10.(2分)下列各对数中,相等的一对数是().
A. B. C. D.
【答案】A
【考点】实数的运算
【解析】【解答】解:A.∵(-2)3=-8,-23=-8,∴(-2)3=-23,A符合题意;
B.∵-22=-4,(-2)2=4,∴-22≠(-2)2,B不符合题意;
C.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,C不符合题意;
D.∵=,()2=,∴≠()2,D不符合题意;
故答案为:A.
【分析】根据乘方的运算,绝对值,去括号法则,分别算出每个值,再判断是否相等,从而可得出答案. 11.(2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()
A.2α
B.90°+2α
C.180°﹣2α
D.180°﹣3α
【答案】D
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】解:∵AD∥BC,
∴∠DEF=∠EFB=α
在图(2)中,∠GFC=180°-2EFG=180°-2α,
在图(3)中,∠CFE=∠GFC-∠EFC=180°-2α-α=180°-3α。
故答案为:D。
【分析】根据题意,分别在图2和图3中,根据∠DEF的度数,求出最终∠CFE的度数即可。
12.(2分)下列各组数中互为相反数的一组是()
A.|-2|与
B.-4与-
C.-与| |
D.-与
【答案】C
【考点】立方根及开立方,实数的相反数
【解析】【解答】A选项中,所以,错误;
B选项中,所以-4=,错误;
C选项中,与互为相反数,正确;
D选项中,与即不相等,也不互为相反数,错误。
故答案为:C
【分析】根据相反数的定义进行判断即可。
二、填空题
13.(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即可。
14.(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。
15.(1分)关于x,y的方程组中,若的值为,则m=________。
【答案】2
【考点】解二元一次方程组
【解析】【解答】解:
由得:3mx=9
∴3×m=9
解之:m=2
故答案为:2
【分析】观察方程组中同一未知数的系数的特点:y的系数互为相反数,因此将两方程相加,可得出3mx=9,再将x的值代入方程求出m的值。
16.(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:方程整理得:,
根据方程组解是,得到,
解得:,
故答案为:
【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。
17.(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
18.(1分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个
【答案】110
【考点】二元一次方程的解
【解析】【解答】解:设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④
3x+16=2y+51,即,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.
【分析】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,又k是整数,且0<k<3 ,则k=1或者2,然后分别算出k=1与k=2时,甲和乙分别摸出的球的个数,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,②2x+32=2y+51,③3x+16=y+68,④3x+16=2y+51四个二元一次方程,再分别求出它们的正整数解再根据乙至少摸了两次5个球进行检验即可得出x,y的值,进而根据箱子中的球的个数至少等于两个人摸出的个数之和算出箱子中球的个数的所有情况,再比较即可算出答案。
三、解答题
19.(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可. 20.(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
21.(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
22.(5分)把下列各数填在相应的大括号里:
,,-0.101001,,―,0.202002…, ,0,
负整数集合:( …);
负分数集合:( …);
无理数集合:( …);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,
,…);负分数集合:(-0.101001,―,,…);无理数集合:(0.202002…,
,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。
实数包括有理数和无理数。
有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。
23.(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。
正有理数、0、负有理数统称有理数。
非负整数包括正整数和0;无理数是无限不循环的小数。
将各个数准确填在相应的括号里。
24.(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
25.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
26.(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。