高中数学人教A版必修三课时习题:第2章 统计 2.1.2含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 系统抽样
课时目标
1.掌握系统抽样的概念和操作步骤.
2.会用系统抽样法进行抽样.
识记强化
1.系统抽样的概念
将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分中抽取一些个体,得到所需要的样本,这样的抽样方法叫做系统抽样.
2.系统抽样的步骤
假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:
(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;
(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n
;
(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );
(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.
课时作业
一、选择题
1.系统抽样适用的总体应是( )
A.容量较少的总体
B.总体容量较多
C.个体数较多但均衡无差异的总体
D.任何总体
答案:C
解析:系统抽样的适用范围应是总体中的个体数目较多且无差异,故选C.
2.在对101个人进行一次抽样时,先采用抽签法从中剔除一个人,再在剩余的100中随机抽取10人,那么下列说法正确的是( )
A.这种抽样方法对于被剔除的个体是不公平的,因为他们失去了被抽到的机会
B.每个人在整个抽样过程中被抽到的机会均等,因为每个人被剔除的可能性相等,那么,不被剔除的机会也是均等的
C.由于采用了两步进行抽样,所以无法判断每个人被抽到的可能性是多少
D.每个人被抽到的可能性不相等
答案:B
解析:由于第一次剔除时采用抽签法,对每个人来说可能性相等,然后随机抽取10人对每个人的机会也是均等的,所以总的来说每个人的机会都是均等的,被抽到的可能性都是相等的.
3.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )
A.5,10,15,20,25 B.2,4,8,16,32
C.1,2,3,4,5 D.7,17,27,37,47
答案:D
4.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为( ) A.24 B.25
C.26 D.28
答案:B
解析:5008=200×25+8,所以每组的容量为25.
5.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )
A.5 B.7
C.11 D.13
10,20,30,…,490,得到各组中应抽出的号签,组成一个容量为50的样本.
11.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按15的比例抽取样本,用系统抽样的方法进行抽取,并写出过程.
解:按照15的比例抽取样本,则样本容量为15
×295=59.步骤如下: (1)编号:按现有的号码.
(2)确定分段间隔k =5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生.
(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l (1≤l ≤5).
(4)那么抽取的学生编号为l +5k (k =0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本编号为3,8,13,…,288,293.
能力提升
12.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A .26,16,8
B .25,17,8
C .25,16,9
D .24,17,9
答案:B
解析:本题主要考查系统抽样的意义.依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k 组抽中的号码是3+12(k -1).令3+
12(k -1)≤300得k ≤1034
,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034
<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B. 13.为了解参加数学竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么样的抽样方法比较恰当?简述抽样过程.
解:适宜选用系统抽样,抽样过程如下:
(1)随机地将这1000名学生编号为000,001,002, (999)
(2)将总体按编号顺序分成50部分,每部分包括20个个体;
(3)在第一部分的个体编号000,001,002,…,019中,用简单随机抽样抽取一个号码,比如017;
(4)以017为起始号,每隔20抽取一个号码,这样得到一个容量为50的样本,
017,037,047,…,977,997.。