高中物理曲线运动真题汇编(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理曲线运动真题汇编(含答案)
一、高中物理精讲专题测试曲线运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:
(1)质量为m 2的物块在D 点的速度;
(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:
(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】
(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:
v y 22100.45gR =⨯⨯m/s =3m/s
y D
v v =tan53°43
=
所以:v D =2.25m/s
(2)物块在内轨道做圆周运动,在最高点有临界速度,则
mg =m 2
v R
,
解得:v 32
gR =
=
m/s 物块到达P 的速度:
22
223 2.25P D y v v v =+=+=3.75m/s
若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:
()22
222111cos5322
M P m v m v m g R =-⋅+︒ 可得:2
0.3375M v =-,这显然是不可能的,所以物块不能到达M 点
(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:
24m/s a =
则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=
质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:
p 10BC E m gx μ-=
质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:
2p 221
2
BC B E m gx m v μ-=
可得,2m BC x = 在这过程中摩擦力做功:
12 1.6J BC W m gx μ=-=-
由动能定理,B 到D 的过程中摩擦力做的功:
W 2222201122
D m v m v =
- 代入数据可得:W 2=-1.1J
质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功
12 2.7J W W W =+=-
即克服摩擦力做功为2.7 J .
3.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
今将小球拉至悬线与竖直方向成60o 角由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无机械能损失。
已知Q 离开平板车时速度大小11m/s v =,Q 与P 之间的动摩擦因数0.2μ=,重力加速度210m/s g =,计算: (1)小球与Q 碰撞前瞬间,细绳拉力T 的大小; (2)平板车P 的长度L ;
(3)小物块Q 落地时与小车的水平距离s 。
【答案】(1) 20 N ;(2) 1.75 m ;(3) 0.1 m 。
【解析】 【详解】
(1)设小球与Q 碰前瞬间的速度为v 0,小球在下摆过程中,由动能定理有:
201(1cos60)2
mgR mv -︒=
在最低点有:
20
v T mg m R
-=
解得:
0==3m/s v gR 、T =20 N
(2)小球与Q 碰撞后,设小球与Q 的速度分别为v 0′和v Q ,在碰撞过程中由动量守恒和能量守恒有:
00
Q mv mv mv '=+ 22200111222
Q mv mv mv '=+
解得:
v Q =3 m/s
设Q 离开平板车时P 的速度为v 2,Q 与P 组成的系统动量守恒和能量守恒有:
mv Q =mv 1+Mv 2
22212111222
Q mv mv Mv mgL μ=++ 解得:
v 2=0.5 m/s 、L =1.75 m
(3) Q 脱离P 后做平抛运动,设做平抛运动的时间为t ,则:
2
12
h gt =
解得:
t =0.2 s
Q 落地时二者相距:
s =(v 1-v 2)t =0.1 m
4.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:
(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;
(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:
(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】
(1)根据题意C 点到地面高度0
cos370.08C h R R m =-=
从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212
C h h gt -= 化简则0.3t s =
根据 BC B x v t = 可知3/B v m s =
飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y B
v v θ=
=
即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小f
a g m
μ=
= 根据22
2E D DE v v ax -=
联立两式则4/D v m s =
在圆弧轨道最低处2D
N v F mg m R
-= 则100N F N = ,即对轨道压力为100N .
(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0
tan y
v v α''=
由于高度没变,所以3/y y v v m s '== ,0
37α=
因此0
4/v m s '= 对应的水平位移为0
1.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=
【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.
5.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:
(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3g
L
ω=
的过程中,转台对物块做的功.
【答案】(1)1g
L
μω=(2)233g L
ω=
(3)132mgL
⎛ ⎝ 【解析】 【分析】 【详解】
(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:
212sin mg m L μωθ=⋅
代入数据得
1g
L
μω=
(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供
2
2tan 2sin mg m L θωθ=⋅
代入数据得
233g L
ω=
(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有
23tan 2sin mg m L αωα=⋅
代入数据得
60α=︒
转台对物块做的功等于物块动能增加量与重力势能增加量的总和即
231
(2sin 60)(2cos302cos60)2
W m L mg L L ω=
⋅+-o o o
代入数据得:
1
(3)2
W mgL =+
【点睛】
本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒
定律求转台对物块所做的功.
6.如图所示,大小相同且质量均为m 的A 、B 两个小球置于光滑的边长为22H 的正方形玻璃板上,B 静止,A 由长为2H 的轻质细绳悬挂于O 3,静止时细绳刚好拉直,悬点距离玻璃板和玻璃板距离水平地面均为H ,玻璃板中心O 2位于悬点O 3正下方,O 3与O 2的延长线和水平地面交于点O 1.已知重力加速度为g .
(1)某同学给A 一个水平瞬时冲量I ,A 开始在玻璃板上表面做圆周运动且刚好对玻璃板无压力,求I 满足的表达式;
(2)A 运动半周时刚好与静止的B 发生对心弹性正碰,B 从玻璃板表面飞出落地,求小球B 的落点到O 1的距离.
【答案】(1)I m gH = (2)3H 【解析】
设细绳与竖直方向夹角为θ (1)cos 1H
h
θ=
= 45θ=o ,A 圆周运动轨道半径为H 由A 的受力分析可知:20
tan mv mg H
θ= 动量定理:0I mv =
I m gH =
(2)A 与B 发生弹性正碰11122o m v m v m v =+
22211122111
222
o m v m v m v =+
解得2v gH =
B 球被碰后,在桌面上匀速运动飞出桌面后平抛,设平抛的射程为x
212
H gt =
2x v t =
由几何关系得 221(2)o p H H x =
++
13o p H =
【点睛】(1)根据圆周运动向心力表达式即可求得;
(2)根据弹性碰撞机械能守恒动量守恒求得B 小球的速度,再结合平抛运动的知识求得距离.
7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。
某时刻B 静止在地面上且对地面的压力恰好为零。
已知重力加速度为g ,不计一切阻力。
求:
()1该时刻连接A 的轻绳与竖直方向的夹角θ; ()2该时刻A 的线速度大小v ;
()3从该时刻起轻摇细管使B 升高到离地高度为/2l 处保持静止,求B 上升过程中手对
A 、
B 系统做的功。
【答案】()1?
60o
;()32?2
gl
;()938mgl 。
【解析】 【分析】
(1)对B 根据平衡求绳子的拉力;对A 球分析,由力的平衡条件可求绳与竖直方向夹角θ; (2)对A 水平方向做圆周运动,利用牛顿第二定律列式求解;
(3)由力的平衡条件和牛顿第二定律并结合功能关系列式联立可求整个过程中人对A 、B 系统做的功。
【详解】
(1)B 对地面刚好无压力,故此时绳子的拉力为2T mg = 对A 受力分析如图所示:
在竖直方向合力为零,故cos T mg θ= 代入数据解得:60θ=o
(2)A 球水平方向做圆周运动,由牛顿第二定律得:2
sin sin v T m l θθ
=代入数据解得:
32
gl
v =
(3)当B 上升
2l 时,拉A 的绳长为32
l
,此时对水平方向上有: 2
1sin 3sin 2
v T m
l θθ= 联立解得:13
2
v gl =A 相对于原来的高度下降的距离:cos 24l l h V θ=
=B 物体重力势能的增加量:122
l
E mg mgl =⋅=V A 物体重力势能的减少量:244
l mgl
E mg =⋅
=V A 物体动能的增加量2231113
228
E mv mv mgl =
-=V 对系统运用功能关系可得手对系统做的功:1229
8
W E E E mgl =-+=V V V 【点睛】
本题综合考查共点力平衡、牛顿第二定律和功能关系,对于圆锥摆问题,关键分析小球的受力情况,确定其向心力,运用牛顿第二定律和圆周运动的知识结合解答。
8.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。
释放被压缩的轻弹簧,P 、Q 两小球被轻弹簧弹出,小球P 与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C ;小球Q 与弹簧分离后与桌面边缘的橡皮泥球S 碰撞后合为一体飞出,落在水平地面上的D 点。
已知水平桌面高为h =0.2 m ,D 点到桌面边缘的水平距离为x =0.2 m ,重力加速度为g =10 m/s 2,求:
(1)小球P 经过半圆形轨道最低点B 时对轨道的压力大小N B ′; (2)小球Q 与橡皮泥球S 碰撞前瞬间的速度大小v Q ; (3)被压缩的轻弹簧的弹性势能E p 。
【答案】(1)120N (2)2 m/s (3)3 J 【解析】 【详解】
(1)小球P 恰好能通过半圆形轨道的最高点C ,则有
mg =m 2C
v R
解得
v C gR 对于小球P ,从B →C ,由动能定理有
22
11222
C B mgR mv mv -=-
解得
v B 5gR 在B 点有
N B -mg =m 2
B
v R
解得
N B =6mg =120 N
由牛顿第三定律有
N B ′=N B =120 N
(2)设Q 与S 做平抛运动的初速度大小为v ,所用时间为t ,根据公式h =
12
gt 2
,得 t =0.2 s
根据公式x =vt ,得
v =1 m/s
碰撞前后Q 和S 组成的系统动量守恒, 则有
Mv Q =2Mv
解得
v Q =2 m/s
(3)P 、Q 和弹簧组成的系统动量守恒,
则有
mv P =Mv Q
解得
v P =1 m/s
对P 、Q 和弹簧组成的系统,由能量守恒定律有
221122
p P Q E mv Mv =+ 解得
E p =3 J
9.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v 0=进入轨道DCB ,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重力加速度大小为g ,求:
(1)在D 点时轨道对小滑块的作用力大小F N ;
(2)弹簧压缩到最短时的弹性势能E p ;
(3)若水平轨道AB 粗糙,小滑块从P 点静止释放,且PB =5l ,要使得小滑块能沿着轨道BCD 运动,且运动过程中不脱离轨道,求小滑块与AB 间的动摩擦因数μ的范围.
【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7
【解析】(1)
解得
(2)根据机械能守恒
解得
(3)小滑块恰能能运动到B 点
解得μ=0.7
小滑块恰能沿着轨道运动到C点
解得μ=0.5
所以0.5≤μ≤0.7
小滑块恰能沿着轨道运动D点
解得μ=0.2
所以μ≤0.2
综上μ≤0.2或0.5≤μ≤0.7
10.如图所示,A、B两球质量均为m,用一长为l的轻绳相连,A球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B球水平向右的初速度v0,经一段时间后B球第一次到达最高点,此时小球位于水平横杆下方l/2处.(忽略轻绳形变)求:
(1)B球刚开始运动时,绳子对小球B的拉力大小T;
(2)B球第一次到达最高点时,A球的速度大小v1;
(3)从开始到B球第一次到达最高点的过程中,轻绳对B球做的功W.
【答案】(1)mg+m
2
v
l
(2)
2
12
v gl
v
-
=3)
2
4
mgl mv
-
【解析】
【详解】
(1)B球刚开始运动时,A球静止,所以B球做圆周运动
对B球:T-mg=m
2 0 v l
得:T=mg+m
2 0 v l
(2)B球第一次到达最高点时,A、B速度大小、方向均相同,均为v1
以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,
2220111112222
l mv mgl mv mv mg -=+- 得:2012
v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理
W -mg 221011222
l mv mv =- 得:W =204
mgl mv -。