定常可压缩流动高效求解方法研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、构建了在工程问题中通过综合应用拉普拉斯延拓和全局耦合线性求解技术来提 高计算效率的系统方法和工具。在成熟的有限体积求解器基础上,应用所发展的拉普拉 斯延拓方法和全局线性求解方法,构造了定常可压缩流动问题的快速求解工具。通过二 维翼型、三维机翼和翼身组合体等飞行器气动设计中常见问题的测试,证明了综合应用 全局耦合线性求解方法与拉普拉斯加伪时间混合延拓方法可以在全局耦合线性求解方 法的基础上再提高定常可压缩流动问题的求解效率 15% ~30%。此外,算例还说明单独 应用全局耦合线性求解方法或拉普拉斯加伪时间混合延拓方法都不能取得比较稳定的 收敛加速效果,显示了构造新型的求解体系的必要性。
4、发展了一种基于 GMRES 方法、近似雅可比矩阵和对称高斯 -赛德尔方法预处理 的多块网格全局耦合线性求解方法,改进了传统多块网格非耦合线性求解方法在块边 界处存在信息延迟的不足,改善了隐式求解方法的效率和稳定性。在传统多块结构网格 的处理中,仅在求解残差时通过虚网格计入网格间的耦合效应,而线性方程的求解则在 各块上单独进行。这一处理方法会使网格块界面处的解产生延迟问题。通过针对一维线 性问题的分析,定量地证明了这一延迟与 CFL 数成正比,是对隐式求解方法优势的一 种抵消。本文通过应用全局线性求解方法克服了这一问题。同时,相对于使用全阶雅可 比,近似雅可比矩阵的应用减少了算法对内存的需求。
1、针对定常可压缩流动问题中初始残差一般集中于壁面附近的特点,提出了一种 伪时间项加拉普拉斯算子的混合方程延拓方法,提高了定常流动隐式解法的非线性收敛 效率。拉普拉斯算子与伪时间项都是非奇异线性算子,对牛顿迭代收敛性的改善基本等 价。但是,与伪时间项不同,拉普拉斯算子在避免收敛停滞方面相对具有优势。并且, 拉普拉斯算子具有椭圆性,其逆算子具有全局的影响和依赖域,在处理集中的初始残差 方面具有独特优势。另外,拉普拉斯算子的引入与流动求解方法中的人工粘性或迎风格 式等形式的稳定性耗散也不冲突。但由于求解精度的要求,稳定性耗散的量都受到严格 控制,造成此类耗散在非线性迭代的初期不足以使牛顿迭代充分发挥其非线性求解效 率,从而有必要引入额外的耗散措施。
2、建立了具有并行计算能力的欧拉方程有限元求解平台。在技术特点方面,将 Persson 和 Peraire 的激波捕捉方法从间断伽辽金方法(Discontinuous Galerkin)推广应用 到连续有限元方法中,并通过引入数值通量解决了连续有限元中的网格悬点(hanging point)问题。求解程序以 deal.II 有限元库为基础进行开发,应用牛顿法作为非线性求解 器。在线性问题层面,雅可比矩阵通过 Trilinos 库中的 Sacado 模块以自动微分方法精确 组装;线性问题的求解通过 MUMPS 库以 multifrontal 方法并行直接求解。直接求解器 的应用使整个问题的求解避免了迭代求解器效率不稳定的问题,为研究延拓方式对非 线性问题求解效率的影响提供了合适的基础工具。对所开发的求解器通过人工解方法 (Method of Manufactured Solution, MMS)以及文献算例进行了验证和确认,保证了后续 数值实验结果的可信度。
A Dissertation Submitted to Northwestern Polytechnical University In partial fulfillment of the requirement
For the degree of Doctor of Philosophy
Xi’an P.R.China July 2017
3、构造了一套包含延拓参数初始值选定、推进和终止算法的伪时间加拉普拉斯混 合延拓方法。以有限元欧拉求解器为工具,通过 GAMM 槽道和 NACA0012 算例验证了 混合延拓方法可以发挥伪时间项和拉普拉斯项各自的优势,实现了比两者单独使用更高
I
西北工业大学博士学位论文
的求解效率。同时,数值实验结果还说明了在仅依赖人工粘性提供的耗散的条件下,伪 时间推进法的非线性收敛效率会受到极大制约。在直接线性求解器的支持下,拉普拉斯 延拓可以使光滑问题极快地完成收敛。
1. Considering the fact that initial residual clustering around wall boundary, a continuation method that blends classical pseudo time marching method and Laplacian operator is proposed in pursuance of faster convergence of steady compressible flow simulation. As a linear operator, the Laplacian operator has similar effect in improvement of convertibility of Newton iteration. However, Laplacian operator has advantage in avoiding convergence stall. While considering the special initial residual distribution, Laplacian operator is preferred due to its global dependence and influence domain. For dissipation and stability techniques such as upwind bias and artificial viscosity, their amount is limited by requirement of accuracy therefor is not large enough to ensure Newton’s method fully achieve its convergence speed.
..
摘要
摘要
在现代飞行器气动外形优化设计中,通过高精度计算流体力学技术(Computational Fluid Dynamics, CFD)进行气动性能评估已经成为整个设计流程中耗时最多的部分。为 提高飞行器气动外形设计的效率,迫切需要研究和开发具有更高效率的高精度计算流 体力学求解方法与工具。在飞行器气动外形优化中,有大量 CFD 问题可以归入定常可 压缩流动模拟的范畴。目前,基于伪时间推进的隐式求解方法是解决此类问题比较成熟 的方案。对于定常流动模拟,此类方法通常都是从根据来流条件初始化的均匀场开始迭 代。这一特点决定了在迭代初期流场残差完全集中在壁面附近,为设计具有针对性的快 速求解方法创造了空间。这也正是本文工作的切入点。为提高定常可压缩流动数值模拟 计算的效率,本文完成了以下工作:
西北工业大学
博士学位论文
(学位研究生)
题目: 定常可压缩流动 高效求解方法研究
作 者: 学科专业: 指导教师:
乔磊 流体力学 华俊Fra bibliotek2017 年 7 月
...
Title: Efficient Solving Method for Steady Compressible Flow
By Qiao Lei Under the Supervision of Professor Hua Jun
关键字: 计算流体力学,定常流动,可压缩流动,牛顿迭代,同伦延拓,多块网格,全 局求解器
II
Abstract
Abstract
In modern aircraft aerodynamic design and optimization, the aerodynamic performance estimation through high fidelity computational fluid dynamics(CFD) technique has became the most time consuming part among the entire design procedure. In order to improve the efficiency of aircraft aerodynamic design, it is urge and necessary to carry out research of more efficient high fidelity CFD methods and develop corresponding solvers. In the aircraft aerodynamic design area, a large mount of the CFD problems could be classified as steady compressible flow simulation. The state-of-art solution for such kind of problems is implicit pseudo time marching method, where the iteration starts with a uniform flow field defined as freestream conditions. This results in that the initial residual is clustered around wall boundary, and makes space for designing specialized convergence techniques. This is also the staring point of the present work. In order to increase computational efficiency, the present thesis finished the following works:
2. A Parallel finite element Euler equations solver is developed. On technical features, Persson and Peraire’s shock capturing method is expand to continuous finite element method from discontinuous Galerkin method. A method for imposing grid hanging node constrain by numerical flux is also proposed. The finite element solver is built based on deal.II finite element library. Newton iteration is chosen as nonlinear solver, where the Jacobian matrix is evaluated exactly via automatic differentiation module Sacado in Trilinos library. The linear system is assembled with PETSc support and solved by multifrontal method implemented in MUMPS. The direct linear solver ensures that the overall nonlinear solving cost could be investigated accurately without the influence of instability of iterative linear solver. The entire solver is validated and verified by manufactured solution method and well studied numerical test cases, which ensured the reliability of numerical test results.
4、发展了一种基于 GMRES 方法、近似雅可比矩阵和对称高斯 -赛德尔方法预处理 的多块网格全局耦合线性求解方法,改进了传统多块网格非耦合线性求解方法在块边 界处存在信息延迟的不足,改善了隐式求解方法的效率和稳定性。在传统多块结构网格 的处理中,仅在求解残差时通过虚网格计入网格间的耦合效应,而线性方程的求解则在 各块上单独进行。这一处理方法会使网格块界面处的解产生延迟问题。通过针对一维线 性问题的分析,定量地证明了这一延迟与 CFL 数成正比,是对隐式求解方法优势的一 种抵消。本文通过应用全局线性求解方法克服了这一问题。同时,相对于使用全阶雅可 比,近似雅可比矩阵的应用减少了算法对内存的需求。
1、针对定常可压缩流动问题中初始残差一般集中于壁面附近的特点,提出了一种 伪时间项加拉普拉斯算子的混合方程延拓方法,提高了定常流动隐式解法的非线性收敛 效率。拉普拉斯算子与伪时间项都是非奇异线性算子,对牛顿迭代收敛性的改善基本等 价。但是,与伪时间项不同,拉普拉斯算子在避免收敛停滞方面相对具有优势。并且, 拉普拉斯算子具有椭圆性,其逆算子具有全局的影响和依赖域,在处理集中的初始残差 方面具有独特优势。另外,拉普拉斯算子的引入与流动求解方法中的人工粘性或迎风格 式等形式的稳定性耗散也不冲突。但由于求解精度的要求,稳定性耗散的量都受到严格 控制,造成此类耗散在非线性迭代的初期不足以使牛顿迭代充分发挥其非线性求解效 率,从而有必要引入额外的耗散措施。
2、建立了具有并行计算能力的欧拉方程有限元求解平台。在技术特点方面,将 Persson 和 Peraire 的激波捕捉方法从间断伽辽金方法(Discontinuous Galerkin)推广应用 到连续有限元方法中,并通过引入数值通量解决了连续有限元中的网格悬点(hanging point)问题。求解程序以 deal.II 有限元库为基础进行开发,应用牛顿法作为非线性求解 器。在线性问题层面,雅可比矩阵通过 Trilinos 库中的 Sacado 模块以自动微分方法精确 组装;线性问题的求解通过 MUMPS 库以 multifrontal 方法并行直接求解。直接求解器 的应用使整个问题的求解避免了迭代求解器效率不稳定的问题,为研究延拓方式对非 线性问题求解效率的影响提供了合适的基础工具。对所开发的求解器通过人工解方法 (Method of Manufactured Solution, MMS)以及文献算例进行了验证和确认,保证了后续 数值实验结果的可信度。
A Dissertation Submitted to Northwestern Polytechnical University In partial fulfillment of the requirement
For the degree of Doctor of Philosophy
Xi’an P.R.China July 2017
3、构造了一套包含延拓参数初始值选定、推进和终止算法的伪时间加拉普拉斯混 合延拓方法。以有限元欧拉求解器为工具,通过 GAMM 槽道和 NACA0012 算例验证了 混合延拓方法可以发挥伪时间项和拉普拉斯项各自的优势,实现了比两者单独使用更高
I
西北工业大学博士学位论文
的求解效率。同时,数值实验结果还说明了在仅依赖人工粘性提供的耗散的条件下,伪 时间推进法的非线性收敛效率会受到极大制约。在直接线性求解器的支持下,拉普拉斯 延拓可以使光滑问题极快地完成收敛。
1. Considering the fact that initial residual clustering around wall boundary, a continuation method that blends classical pseudo time marching method and Laplacian operator is proposed in pursuance of faster convergence of steady compressible flow simulation. As a linear operator, the Laplacian operator has similar effect in improvement of convertibility of Newton iteration. However, Laplacian operator has advantage in avoiding convergence stall. While considering the special initial residual distribution, Laplacian operator is preferred due to its global dependence and influence domain. For dissipation and stability techniques such as upwind bias and artificial viscosity, their amount is limited by requirement of accuracy therefor is not large enough to ensure Newton’s method fully achieve its convergence speed.
..
摘要
摘要
在现代飞行器气动外形优化设计中,通过高精度计算流体力学技术(Computational Fluid Dynamics, CFD)进行气动性能评估已经成为整个设计流程中耗时最多的部分。为 提高飞行器气动外形设计的效率,迫切需要研究和开发具有更高效率的高精度计算流 体力学求解方法与工具。在飞行器气动外形优化中,有大量 CFD 问题可以归入定常可 压缩流动模拟的范畴。目前,基于伪时间推进的隐式求解方法是解决此类问题比较成熟 的方案。对于定常流动模拟,此类方法通常都是从根据来流条件初始化的均匀场开始迭 代。这一特点决定了在迭代初期流场残差完全集中在壁面附近,为设计具有针对性的快 速求解方法创造了空间。这也正是本文工作的切入点。为提高定常可压缩流动数值模拟 计算的效率,本文完成了以下工作:
西北工业大学
博士学位论文
(学位研究生)
题目: 定常可压缩流动 高效求解方法研究
作 者: 学科专业: 指导教师:
乔磊 流体力学 华俊Fra bibliotek2017 年 7 月
...
Title: Efficient Solving Method for Steady Compressible Flow
By Qiao Lei Under the Supervision of Professor Hua Jun
关键字: 计算流体力学,定常流动,可压缩流动,牛顿迭代,同伦延拓,多块网格,全 局求解器
II
Abstract
Abstract
In modern aircraft aerodynamic design and optimization, the aerodynamic performance estimation through high fidelity computational fluid dynamics(CFD) technique has became the most time consuming part among the entire design procedure. In order to improve the efficiency of aircraft aerodynamic design, it is urge and necessary to carry out research of more efficient high fidelity CFD methods and develop corresponding solvers. In the aircraft aerodynamic design area, a large mount of the CFD problems could be classified as steady compressible flow simulation. The state-of-art solution for such kind of problems is implicit pseudo time marching method, where the iteration starts with a uniform flow field defined as freestream conditions. This results in that the initial residual is clustered around wall boundary, and makes space for designing specialized convergence techniques. This is also the staring point of the present work. In order to increase computational efficiency, the present thesis finished the following works:
2. A Parallel finite element Euler equations solver is developed. On technical features, Persson and Peraire’s shock capturing method is expand to continuous finite element method from discontinuous Galerkin method. A method for imposing grid hanging node constrain by numerical flux is also proposed. The finite element solver is built based on deal.II finite element library. Newton iteration is chosen as nonlinear solver, where the Jacobian matrix is evaluated exactly via automatic differentiation module Sacado in Trilinos library. The linear system is assembled with PETSc support and solved by multifrontal method implemented in MUMPS. The direct linear solver ensures that the overall nonlinear solving cost could be investigated accurately without the influence of instability of iterative linear solver. The entire solver is validated and verified by manufactured solution method and well studied numerical test cases, which ensured the reliability of numerical test results.