关于离散型随机变量数学期望的几种求法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于离散型随机变量数学期望的几种求法离散型随机变量数学期望是衡量随机变量数字大小指标之一,也是概率论与数理统计中最基本也最重要的概念。

它可以体现利用该变量值观察数据的水平。

本文将介绍离散型随机变量的求数学期望的几种方法。

首先,关于离散型随机变量的数学期望,最基本的求法是加法法则。

即将分布函数f(x)的每一个取值乘以相应样本量x取,并把所有乘积相加就可以得到离散型随机变量的数学期望。

用数学符号表示就是:E[X] = Σ xf (x)。

如果离散型随机变量X的取值和概率f (x)都很多,那上述乘加过程就不方便进行。

此时,可以利用乘法法则求数学期望。

乘法运算公式表示如下:E[X] = Σ xP(X=x)。

乘法运算的结果可以让抽样的数据简单明了,只要把每一个X的取值乘以相应的概率P(X=x)即可得到期望值,这不仅仅可以大大简化计算,而且是个较为可靠的评价指标。

而数学期望的另一种求解方法则叫做函数法则,其思想就是把μ作为一个函数,给定P(x),当E[X]为函数f (X),其结果可由函数f
(X)与P(X)给出,函数法则可以有效降低传统加法法则求法中变量和概率的乘积,减小计算量,提高效率。

最后还有另一种求离散型随机变量数学期望的方法,它叫做采样平均法,这种法则的思想就是,根据我们了解到的离散型随机变量的取值及概率,以此为基础,根据实际的情况随机抽取一定数量的样本来分析离散型随机变量的期望,然后将抽到取值的平均值作为期望值来表示。

用数学符号表示就是:E[X] =抽样值x1+ x2 +。

+xn/n。

该方法结果较加法法则有一定的偏差,但也较准确。

总结来说,以上三种不同的方法都可以用来求离散型随机变量的数学期望,每一种方法都有其使用优劣之处。

但是,总体来说,最佳的方式是采用函数法则,当然,这也取决于需求的精确度。

相关文档
最新文档