寺沟乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寺沟乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知方程组,则(x﹣y)﹣2=()
A. 2
B.
C. 4
D.
【答案】D
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①﹣②得:x﹣y=2,
则原式=2﹣2= .故答案为:D
【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。

2、(2分)2.﹣的绝对值是(),的算术平方根是().
A. - ;
B. ;-
C. - ;-
D. ;
【答案】D
【考点】算术平方根,实数的绝对值
【解析】【解答】解:﹣的绝对值是,的算术平方根是
【分析】根据绝对值的意义,一个负数的绝对值等于它的相反数,得出-的绝对值;再根据算数平方根的定义,,从而得出的算数平方根是。

3、(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程的解
【解析】【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,符合题意;
B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,不符合题意;
C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,不符合题意;
D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,不符合题意.
故答案为:A
【分析】由二元一次方程的解的意义,将选项中的x、y的值代入已知的方程检验即可判断求解。

4、(2分)二元一次方程7x+y=15有几组正整数解()
A.1组
B.2组
C.3组
D.4组
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:方程可变形为y=15﹣7x.
当x=1,2时,则对应的y=8,1.
故二元一次方程7x+y=15的正整数解有,,共2组.
故答案为:B
【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。

5、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()
A. ∠A+∠D+∠E=360°
B. ∠A-∠D+∠E=180°
C. ∠A+∠D-∠E=180°
D. ∠A+∠D+∠E=180°【答案】B
【考点】平行线的判定与性质
【解析】【解答】解:过点E作EF∥AB
∵AB∥CD
∴AB∥CD∥EF
∴∠1+∠A=180°①,∠2=∠D②
由①+②得:∠1+∠A+∠2=180°+∠D
∴∠A-∠D+∠AED=180°
故答案为:B
【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。

6、(2分)某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最
后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()
A.a>b
B.a<b
C.a=b
D.与a和b的大小无关
【答案】A
【考点】整式的加减运算,不等式及其性质
【解析】【解答】解:根据题意得:(20a+10b)÷30﹣= = ,当a>b,即a﹣b>0时,结果赔钱.故答案为:A.
【分析】根据单价×数量=总价,先求出两次购买肉的总价(20a+10b),再求出卖肉的总价×30,根据肉全部卖掉,结果赔了钱可知(20a+10b)-×30<0,然后解不等式即可得出结论。

7、(2分)|-125|的立方根为()
A. -5
B. 5
C. 25
D. ±5
【答案】B
【考点】立方根及开立方
【解析】【解答】|-125|=125.∵53=125,∴125的立方根为5,即|-125|的立方根为5.故答案为:B.
【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。

根据立方根的意义可得|-125|的立方根为5。

8、(2分)下列各数中,2.3,,3.141141114…,无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:∵
∴无理数有:、、3.141141114…一共3个
故答案为:B
【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。

9、(2分)4的平方的倒数的算术平方根是()
A.4
B.
C.-
D.
【答案】D
【考点】算术平方根
【解析】【解答】解:∵42=16,16的倒数=,。

故答案为:D.
【分析】根据平方、倒数、算术平方根的意义即可解答。

10、(2分)下列各组数中,是方程2x-y=8的解的是()A.
B.
C.
D.
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.
故答案为:C.
【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。

11、(2分)如左下图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()
A. 150°
B. 130°
C. 100°
D. 50°
【答案】B
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵a∥b,
∴∠2+∠3=180°
∵∠1=∠3=50°
∴∠2=180°-∠3=180°-50°=130°
故答案为:B
【分析】根据平行线的性质,可证得∠2+∠3=180°,再根据对顶角相等,求出∠3的度数,从而可求出∠2的度数。

12、(2分)把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()
A. 5与6之间
B. 4与5之间
C. 3与4之间
D. 2与3之间
【答案】A
【考点】估算无理数的大小
【解析】【解答】解:正方形的边长= = .
∵25<28<36,
∴5<<6.
故答案为:A
【分析】把长宽分别为7和4的长方形经过割补变为一个正方形,从而知道长方形与正方形的面积相等,根据正方形的面积计算方法得出其边长应该为根号28,而根号28的被开方数28,介于两个完全平方数25与36之间,根据算数平方根的意义,被开方数越大其算数平方根也越大即可得出根号28介于5和6之间。

二、填空题
13、(4分)将下列各数的序号填在相应的集合里.
①,②,③4.3,④,⑤42,⑥0,⑦,⑧,⑨3.3030030003……有理数集合:{________ … };
正数集合:{________… };
负数集合:{________… };
无理数集合:{________… }.
【答案】①②③④⑤⑥⑦;③⑤⑦⑧⑨;①②④;⑧⑨
【考点】正数和负数,有理数,无理数
【解析】【解答】解:
有理数集合:{ ①②③④⑤⑥⑦… };
正数集合:{ ③⑤⑦⑧⑨… };
负数集合:{ ①②④… };
无理数集合:{ ⑧⑨… }.
【分析】根据有理数的意义可得有理数集合:{ ①②③④⑤⑥⑦… };
根据正数的意义可得正数集合:{ ③⑤⑦⑧⑨… };
根据负数的意义可得负数集合:{ ①②④… };
根据无限部循环小数是无理数可得无理数集合:{ ⑧⑨… }.
14、(10分)完成下面推理过程.
如图:在四边形ABCD中,于点于点F,求证:
证明:已知
________ ________
________ ________
已知
________
________ ________
________ ________
________
【答案】BC;同旁内角互补,两直线平行;;两直线平行,内错角相等;垂直的定义;EF;同位角相等,两直线平行;;两直线平行,同位角相等;等量代换
【考点】平行线的判定与性质
【解析】【解答】证明:已知,

同旁内角互补,两直线平行,
两直线平行,内错角相等,
已知,
垂直的定义,
同位角相等,两直线平行,
两直线平行,同位角相等,
等量代换,
故答案为:BC,同旁内角互补,两直线平行,,垂直的定义,EF,同位角相等,两直线平行,,
两直线平行,同位角相等,等量代换.
【分析】根据同旁内角互补,两直线平行可得AD//BC ,由两直线平行,内错角相等可得1=∠DBC,由垂直的定义可得BDF=∠EFC=90,所以根据同位角相等,两直线平行可得BD//EF,根据两直线平行,同位角相等可得∠2=∠DBC,由等量代换可得∠1=∠2。

15、(1分)写出一个解为x≥1的一元一次不等式:________
【答案】x-1≥0
【考点】不等式及其性质
【解析】【解答】解:∵x≥1
∴x-1≥0(答案不唯一)
故答案为:x-1≥0【分析】利用不等式的基本性质,可得出答案,此题答案不唯一。

16、(1分)不等式组的所有整数解是________.
【答案】0.1
【考点】一元一次不等式组的特殊解
【解析】【解答】解不等式组可得-,则所有的整数解可能为0、1。

【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
17、(2分)的算术平方根是________ ;(-2)2的平方根是________
【答案】3;±2
【考点】平方根,算术平方根
【解析】【解答】解:∵=9
∴的算术平方根为3,
∵(-2)2=4
∴(-2)2的平方根是±2
故答案为:3,±2【分析】先将化简,再求出它的算术平方根即可;先求出(-2)2,再求出平方根即可。

18、(1分)如图,图中,∠B的同旁内角除了∠A还有________.
【答案】∠ACB,∠ECB
【考点】同位角、内错角、同旁内角
【解析】【解答】解:∠B的同旁内角有∠A,∠ACB,∠ECB.故答案为:∠ACB,∠ECB.
【分析】同旁内角是指在两条直线的内部,在第三条直线的同侧。

根据同旁内角的意义可知,∠B的同旁内角除了∠A还有∠ACB,∠ECB。

三、解答题
19、(5分)如图,DB∥FG∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.
【答案】解:∵DB∥FG∥EC,
∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,
∴∠BAC=∠BAG+∠CAG=96°;
∵AP为∠BAC的平分线,
∴∠BAP=∠CAP=48°,
∴∠PAG=∠CAP﹣∠GAC=12°
【考点】角平分线的定义,平行线的性质
【解析】【分析】根据两直线平行,内错角相等,和角平分线的定义,求出∠PAG的度数.
20、(5分)若与(b-27)2互为相反数,求- 的立方根.
【答案】解:由题意知+(b-27)2=0
∴a+8=0 ,b-27=0
∴a=-8,b=27,
∴- =-5.
故- 的立方根是
【考点】立方根及开立方,非负数之和为0
【解析】【分析】根据相反数的意义,及二次根式的非负性,偶次方的非负性,知,几个非负数的和等于0,则这几个数都等于0,从而得出关于a,b的二元一次方程组,求解得出a,b的值,再代入代数式即可得出答案。

21、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
22、(20分)利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:
(1)x+2>7.
(2)3x<-12.
(3)-7x>-14.
(4)x<2.
【答案】(1)解:两边都减去2,得x>5
(2)解:两边都除以3,得x<-4
(3)解:两边都除以-7,得x<2
(4)解:两边都乘3,得x<6
【考点】不等式及其性质
【解析】【分析】(1)根据不等式的性质①两边的减去2即可。

(2)根据不等式的性质②两边都除以3即可。

(3)根据不等式的性质③两边都除以-7即可。

(4)根据不等式的性质②两边都乘以3(除以)即可。

23、(10分)求x的值:
(1)27﹣(x+4)3=0;
(2)2(x﹣1)2= .
【答案】(1)解:∵27﹣(x+4)3=0,∴∴x+4=3,解得:x=-1
(2)解:∵2(x﹣1)2= ,∴(x﹣1)2=4,∴x﹣1=±2,解得:x=3或x=﹣1
【考点】立方根及开立方,实数的运算
【解析】【分析】本题是利用开立方和开平方解方程,(1)将27 开立方,即可得x+4=3,求出x的值. (2)因为64的平方根有两个分别是8和-8,所以本题应有两种情况,解得的x 的值也应有两个.
24、(15分)如图
(1)图①是将线段AB向右平移1个单位长度,图②是将线段AB折一下再向右平移1个单位长度,请在图
③中画出一条有两个折点的折线向右平移1个单位长度的图形.
(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.
(3)如图④,在宽为10m,长为40m的长方形菜地上有一条弯曲的小路,小路宽为1m,求这块菜地的面积.【答案】(1)解:如图:

(2)解:三个图形中除去阴影部分后剩余部分的面积:①ab﹣b;②ab﹣b;③ab﹣b
(3)解:40×10﹣10×1=390(m2).
答:这块菜地的面积是390m2.
【考点】矩形的性质,平移的性质
【解析】【分析】(1)根据平移的性质和两个折点,可得小路是三个平行四边形;
(2)根据路的形状是矩形,可得路的面积,根据面积的和差,可得答案;
(3)根据等底等高的面积相等,可得路的面积,根据面积的和差,可得答案.
25、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
26、(5分)如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2和∠CHG的度数.
【答案】解:∵AB∥CD,
∴∠DHE=∠1=50°.
∵∠2=∠DHE,
∴∠2=∠1=50°.
∵∠2+∠CHG=180°,
∴∠CHG=180°-∠2=130°.
【考点】平行线的性质
【解析】【分析】因为两直线平行,同位角相等,可知∠2的对顶角与∠1相等,可知∠2=,又因为∠2与∠CHG是互为邻补角,可知∠CHG的度数.。

相关文档
最新文档