离散数学14.主合取范式
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M0∧M1式(R∧R)形式 补R.用分配律等公式加以整理.
例2 求((PQ)R)P的主合取范式. 解: 原式 ((P∨Q)∨R)∨P (P∨Q)∧(R∨P ) (合取范式) ((P∨Q)∨(R∧R ))∧((R∨P )∨(Q∧Q)) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧ (P∨Q∨R) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) (主合取范式)
⑶用“∧”联结上述大项,即可.
例1 求 PQ和PQ的主合取范式
P Q PQ PQ
FF T
T
FT T
F
TF F
F
TT T
T
PQ M2 P∨Q PQ M1∧M2
(P∨Q )∧(P∨Q)
方法2:用公式的等价变换 ⑴先写出给定公式的合取范式
A1∧A2∧...∧An . ⑵除去合取范式中的所有为永真的合取项. ⑶合并相同的析取项和相同的变元. (4)为使每个Ai变成大项,对缺少变元的析取式Ai补全变
主合取范式
主合取范式
1.定义:给定的命题公式,如果有一个等价公式, 它仅由大项的合取所组成,则该等价式称作原式的主 合取范式.
2.主合取范式的求法 方法1:列真值表 ⑴列出给定公式的真值表. ⑵找出真值表中每个“F”对应的大项.
如何根据一组指派写对应的为“F”的大项:如果变 元P被指派为F,P在大项中以P形式出现;如变元P被指 派为T,P在大项中以P形式出现(确保该大项为F).
例2 求((PQ)R)P的主合取范式. 解: 原式 ((P∨Q)∨R)∨P (P∨Q)∧(R∨P ) (合取范式) ((P∨Q)∨(R∧R ))∧((R∨P )∨(Q∧Q)) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧ (P∨Q∨R) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) (主合取范式)
⑶用“∧”联结上述大项,即可.
例1 求 PQ和PQ的主合取范式
P Q PQ PQ
FF T
T
FT T
F
TF F
F
TT T
T
PQ M2 P∨Q PQ M1∧M2
(P∨Q )∧(P∨Q)
方法2:用公式的等价变换 ⑴先写出给定公式的合取范式
A1∧A2∧...∧An . ⑵除去合取范式中的所有为永真的合取项. ⑶合并相同的析取项和相同的变元. (4)为使每个Ai变成大项,对缺少变元的析取式Ai补全变
主合取范式
主合取范式
1.定义:给定的命题公式,如果有一个等价公式, 它仅由大项的合取所组成,则该等价式称作原式的主 合取范式.
2.主合取范式的求法 方法1:列真值表 ⑴列出给定公式的真值表. ⑵找出真值表中每个“F”对应的大项.
如何根据一组指派写对应的为“F”的大项:如果变 元P被指派为F,P在大项中以P形式出现;如变元P被指 派为T,P在大项中以P形式出现(确保该大项为F).