同安区外国语学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同安区外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3
B .2
C .3
D .4
2. 已知平面向量,,若与垂直,则实数值为( )
(12)=,
a (32)=-,
b k +a b a k A . B . C . D .15-119
1119
【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.3. 某几何体的三视图如图所示,该几何体的体积是(
)
A .
B .
C .
D .
4. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )
A .akm
B .
akm
C .2akm
D .
akm
5. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是(
)
A .
B .
C .
D .
6. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )
A .(,1)
B .(﹣∞,)∪(1,+∞)
C .(﹣,)
D .(﹣∞,﹣)∪(,+∞)
7. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是(
)
A .a >0
B .﹣1<a <0
C .a >1
D .0<a <1
8. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、2
2(0)y px p =>F 2
2
18
-=y x A 两点,若,且,则抛物线方程为( )
B >AF BF ||3AF =A .
B .
C .
D .2
y x =2
2y x =2
4y x =2
3y x
=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
9. 现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是(
)
A .①简单随机抽样,②系统抽样,③分层抽样
B .①简单随机抽样,②分层抽样,③系统抽样
C .①系统抽样,②简单随机抽样,③分层抽样
D .①分层抽样,②系统抽样,③简单随机抽样
10.执行如图所示的程序框图,则输出的S 等于( )
A .19
B .42
C .47
D .89
11.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别
、
,则下列判断正确的是(
)
A .<,乙比甲成绩稳定
B .<,甲比乙成绩稳定
C .>,甲比乙成绩稳定
D .>,乙比甲成绩稳定
12.在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n 等于( )A .4
B .5
C .6
D .7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.
二、填空题
13.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .
14.已知函数f (x )=x m 过点(2,),则m= .
15.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .16.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.
17. 设函数,.有下列四个命题:
()x
f x e =()ln
g x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22
e
m <
-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能
力,考查分类整合思想.18.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为
.
三、解答题
19.已知抛物线C :x 2=2py (p >0),抛物线上一点Q (m ,)到焦点的距离为1.(Ⅰ)求抛物线C 的方程
(Ⅱ)设过点M (0,2)的直线l 与抛物线C 交于A ,B 两点,且A 点的横坐标为n (n ∈N *)(ⅰ)记△AOB 的面积为f (n ),求f (n )的表达式
(ⅱ)探究是否存在不同的点A ,使对应不同的△AOB 的面积相等?若存在,求点A 点的坐标;若不存在,请说明理由.
20.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到
如图所示的几何体σ.
(1)求几何体σ的表面积;
(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.
21.已知矩阵A=,向量=.求向量,使得A2=.
22.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.
(1)若P是等腰三角形PBC的直角顶角,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
23.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,
列表并填入的部分数据如下表:x ①
ππf (x )
1
﹣1
0(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣
,
]上的值域;
(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=
,求△ABC 的面
积.
24.(本题满分14分)已知函数.
x a x x f ln )(2
-=(1)若在上是单调递减函数,求实数的取值范围;
)(x f ]5,3[a
(2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 2
7≥b 求的最小值.
)()(21x g x g -
同安区外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,
∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值
∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,
∴两直线的距离为=,
∴AB的中点M到原点的距离的最小值为+=3,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
2.【答案】A
3.【答案】A
【解析】解:几何体如图所示,则V=,
故选:A.
【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.
4.【答案】D
【解析】解:根据题意,
△ABC中,∠ACB=180°﹣20°﹣40°=120°,
∵AC=BC=akm,
∴由余弦定理,得cos120°=,
解之得AB=akm,
即灯塔A与灯塔B的距离为akm,
故选:D.
【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.
5.【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B
故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
6.【答案】A
【解析】解:因为f(x)为偶函数,
所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)
又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,
即(2x﹣1)2<x2,解得<x<1,
所以x的取值范围是(,1),
故选:A.
7.【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a (1﹣3x 2)≤0,,x ∈(,)恒成立
∵1﹣3x 2≥0成立∴a >0故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.
8. 【答案】C
【解析】由已知得双曲线的一条渐近线方程为,设,则,所以
,
=y 00(,)A x y 02>p
x 0
002
002322ì=ï
ï-ïïïï
+=íïï=ïïïïî
y p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322
->p p
03p <<2=p 24y x 9. 【答案】A
【解析】解;观察所给的四组数据,
①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,
在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A .
10.【答案】B
【解析】解:模拟执行程序框图,可得k=1S=1
满足条件k <5,S=3,k=2满足条件k <5,S=8,k=3满足条件k <5,S=19,k=4
满足条件k<5,S=42,k=5
不满足条件k<5,退出循环,输出S的值为42.
故选:B.
【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.
11.【答案】A
【解析】解:由茎叶图可知=(77+76+88+90+94)=,
=(75+86+88+88+93)==86,则<,
乙的成绩主要集中在88附近,乙比甲成绩稳定,
故选:A
【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.
12.【答案】B
二、填空题
13.【答案】 2016 .
【解析】解:∵f(x)=f(2﹣x),
∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).
∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),
即函数f(x)是周期为2的周期函数,
∵方程f(x)=0在[0,1]内只有一个根x=,
∴由对称性得,f()=f()=0,
∴函数f(x)在一个周期[0,2]上有2个零点,
即函数f(x)在每两个整数之间都有一个零点,
∴f(x)=0在区间[0,2016]内根的个数为2016,
故答案为:2016.
14.【答案】 ﹣1 .
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
15.【答案】 .
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
16.【答案】 4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成.
故答案为:4.
17.【答案】①②④
【解析】
18.【答案】 6 .
【解析】解:∵=(2x﹣y,m),=(﹣1,1).
若∥,
∴2x﹣y+m=0,
即y=2x+m,
作出不等式组对应的平面区域如图:
平移直线y=2x+m,
由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,
解得,代入2x﹣y+m=0得m=6.
即m的最大值为6.
故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,
∴抛物线C的方程为x2=2y;
(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,
∴直线l的斜率存在,
设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,
联立方程组,化简得:x2﹣2kx﹣4=0,
此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,
由韦达定理,得:x1+x2=2k,x1x2=﹣4,
∴S△AOB=|OM|•|x1﹣x2|
=×2
=
=2(*)
又∵A点横坐标为n,∴点A坐标为A(n,),
又直线过点M(0,2),故k==﹣,
将上式代入(*)式,可得:
f(n)=2
=2
=2
=n+(n∈N*);
(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.
理由如下:
设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),
使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,
化简得:m﹣n=﹣=,
又∵m≠n,即m﹣n≠0,
∴1=,即mn=4,解得m=1,n=4或m=4,n=1,
此时A点坐标为(1,),(4,8).
【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.
20.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)由已知S△ABD=××2×sin135°=1,
因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,
因为在空间中有两个平面到平面ABCD的距离为1,
它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
21.【答案】=
【解析】A2=.
设=.由A2=,得,从而
解得x=-1,y=2,所以=
22.【答案】
【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,
∴∠PCB=,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,
整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:==,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
23.【答案】
【解析】解:(Ⅰ)①处应填入.
=.
∵T=,
∴,,
即.
∵,∴,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
24.【答案】
【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.
(2)∵,x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(2
2--+=--++-=。