高三数学第二学期平面向量多选题单元 期末复习测试综合卷学能测试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二学期平面向量多选题单元 期末复习测试综合卷学能测试
一、平面向量多选题
1.在三棱锥M ABC -中,下列命题正确的是( )
A .若12
33
AD AB AC =
+,则3BC BD = B .若G 为ABC 的重心,则111
333
MG MA MB MC =++
C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=
D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】
作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】
对于A ,由已知12
322233
AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则
3
2
BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,
MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即
111
333
MG MA MB MC =++,故B 正确;
对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即
()00
MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()
00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()
000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即
0MB AC ⋅=,故C 正确;
对于D ,111
()()222
PQ MQ MP MB MC MA MB MC MA ∴=-=
+-=+- ()
2
11
2PQ MB MC MA MB MC MA ∴=+-=
+-,又
(
)
22
2
2
222MB MC MA MB MC MA MB MC MB MA MC MA
+-=+++⋅-⋅-⋅
2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1
PQ ∴==,故
D 错误. 故选:BC 【点睛】
关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.
(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.
2.已知向量(2
2cos m x =,()1, sin2n x =,设函数()f x m n =⋅,则下列关于函数
()y f x =的性质的描述正确的是 ( )
A .()f x 的最大值为3
B .()f x 的周期为π
C .()f x 的图象关于点5,012π⎛⎫
⎪⎝⎭
对称 D .()f x 在,03π⎛-⎫
⎪⎝⎭
上是增函数
【答案】ABD 【分析】
运用数量积公式及三角恒等变换化简函数()f x ,根据性质判断. 【详解】
解:()2
2cos 2cos221f x m n x x x x =⋅==+2sin 216x π⎛⎫
=+
+ ⎪⎝

, 当6
x k π
π=
+,()k Z ∈时,()f x 的最大值为3,选项A 描述准确;
()f x 的周期22
T π
π=
=,选项B 描述准确; 当512x π=
时,2sin 2116x π⎛⎫++= ⎪⎝⎭,所以()f x 的图象关于点5,112π⎛⎫
⎪⎝⎭
对称,选项C 描述不准确;
当,03x π⎛⎫∈- ⎪⎝⎭
时,2,626x πππ⎛⎫+∈- ⎪⎝⎭,所以()f x 在,03π⎛-⎫
⎪⎝⎭上是增函数,选项D 描
述准确.
故选:ABD. 【点睛】
本题考查三角恒等变换,正弦函数的图象与性质,属于中档题.
3.下列关于平面向量的说法中正确的是( )
A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λa
b
B .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫
-+∞ ⎪⎝⎭
C .若a c b c ⋅=⋅且0c ≠,则a b =
D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】
由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算
性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】
对于选项A : 由向量共线定理知选项A 正确;
对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则
()
()122530a a b λλλλ⋅+=+++=+>解得5
3
λ>-,当a 与a λb +共线时,
()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,
不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫
-⋃+∞ ⎪⎝⎭
,故选项B 不正确;
对于选项C :若a c b c ⋅=⋅,则()
0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;
对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()
1222
AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.
故选:AD 【点睛】
易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.
4.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知
()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )
A .::7:5:3sinA sin
B sin
C = B .0AB AC ⋅>
C .若6c =,则ABC 的面积是3
D .若8+=b c ,则ABC 73
【答案】ACD 【分析】
先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到
3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选
项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】
依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,
由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;
222222
cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=
222222.5 1.5 3.515
028
k k +-==-<,
故选项B 不正确;
若6c =,则4k =, 所以14,10a b ==,
所以222106141
cos 21062
A +-==-⨯⨯,
所以sin A =

故ABC 的面积是:11sin 610222
bc A =⨯⨯⨯= 故选项C 正确;
若8+=b c ,则2k =, 所以7,5,3a b c ===,
所以2225371
cos 2532
A +-==-⨯⨯,
所以sin 2
A =
, 则利用正弦定理得:
ABC 的外接圆半径是:12sin a A ⨯=
, 故选项D 正确; 故选:ACD. 【点睛】
关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设
4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本
题的关键.
5.下列条件中,使点P 与A ,B ,C 三点一定共面的是( ) A .1233
PC PA PB =
+ B .111
333
OP OA OB OC =
++ C .QP QA QB OC =++ D .0OP OA OB OC +++=
【答案】AB 【分析】
根据四点共面的充要条件,若A ,B ,C ,P 四点共面
(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,对选项
逐一分析,即可得到答案. 【详解】 对于A ,由1233
PC PA PB =+,12
133+=,所以点P 与A ,B ,C 三点共面.
对于B ,由111
333
OP OA OB OC =
++,1111333++=,所以点P 与A ,B ,C 三点共面.
对于C ,由OP OA OB OC =++,11131++=≠,所以点P 与A ,B ,C 三点不共面. 对于D ,由0OP OA OB OC +++=,得OP OA OB OC =---,而11131---=-≠,所以点P 与A ,B ,C 三点不共面. 故选:AB 【点睛】
关键点睛:本题主要考查四点共面的条件,解题的关键是熟悉四点A ,B ,C ,P 共面的充要条件(1)
PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,
考查学生的推理能力与转化思想,属于基础题.
6.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且
AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )
A .0AC BD ⋅=
B .0OA OE ⋅=
C .3OA OB OC ++=
D .ED 在BA 方向上的正射影的数量为
712
【答案】BCD 【分析】
根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】
由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅,
||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,
B C =,
同理:A C =,所以B C A ==,ABC 等边三角形.
2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.
如图建立坐标系,A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫
⎪⎝⎭,16D ⎛ ⎝⎭,解得O ⎛ ⎝⎭
, O 为AE 的中点,所以,0OA OE +=正确,故B 正确;
132
,,,23AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭
,AC BD ⋅=1210236⨯--≠,故A 错误; 3
24
OA OB OC OA OE OE ++=+==
,故C 正确;
16ED ⎛= ⎝⎭,12BA ⎛= ⎝⎭
,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD. 【点睛】
如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式
a b b
⋅进行求解.
7.下列说法中错误的为( )
A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫
-+∞ ⎪⎝⎭
B .向量1(2,3)e =-,213,24e ⎛⎫
=-
⎪⎝
⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||a
D .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 【答案】ACD 【分析】
由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】
对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++
142350λλλ=+++=+>,
且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以5
3
λ>-
且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正
确;
对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则2
23
()||||2
a a
b a a b a ⋅+=+⋅=
, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,
故2
3||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===
+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】
本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.
8.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列 D .14n
n n a a +-=
【答案】BD 【分析】 证明12
33
BE BA BC =
+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}
是以4为首项,4为公比的等比数列,所以14n
n n a a +-=,所以选项D 正确,易得
321a =,选项C 不正确.
【详解】
因为2AE EC =,所以2
3
AE AC =, 所以2
()3
AB BE AB BC +=+, 所以12
33
BE BA BC =
+,所以选项B 正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,
11
4n n
n n a a a a +--=-,
所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.
9.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11
22
AD AB AC =+ B .0MA MB MC ++
= C .2133
BM BA BD =
+ D .12
33
CM CA CD =
+ 【答案】ABD 【分析】
根据向量的加减法运算法则依次讨论即可的答案. 【详解】
解:如图,根据题意得M 为AD 三等分点靠近D 点的点.
对于A 选项,根据向量加法的平行四边形法则易得11
22
AD AB AC =
+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,
2MA MD =-,所以0MA MB MC ++=,故正确;
对于C 选项,()
2212
=3333
BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()
2212
3333
CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD
【点睛】
本题考查向量加法与减法的运算法则,是基础题.
10.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)
C .(2,3)-
D .(2,3)
【答案】ABC 【分析】
设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】
第四个顶点为(,)D x y ,
当AD BC =时,(3,7)(3,8)x y --=--,
解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,
解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,
解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.
故选:ABC.
【点睛】
本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.。

相关文档
最新文档