人教版八年级初二数学下学期二次根式单元自检题检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.下列各式成立的是( )
A 3=
B 3=
C .22(3=-
D .2-=
2.下列运算正确的是( )
A =
B . 3
C =﹣2
D =3.下列运算正确的是( )
A =
B =
C .3=
D 2=
4的倒数是( )
A B .2 C . D .2
- 5.下列计算正确的是( )
A =
B 3=
C =
D .21=
6.下列各式计算正确的是( )
A =
B 6=
C .3+=
D 2=- 7.下列各式中,正确的是( )
A B .C
2= D = - 4
8.下列说法错误的个数是( )
a =;④数轴上的点都表示有理数
A .1个
B .2个
C .3个
D .4个
9.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:
S =,其中2a b c p ++=
,若一个三角形的三边长分别为2,3,4,则其面积( )
A B C D 10.下列二次根式是最简二次根式的是( )
A B C D 二、填空题
11.若0a >化成最简二次根式为________.
12.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.
13.设12211112S =++,22211123S =++,32211134
S =++,设
...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).
14.已知
x =,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______
15.若6x ,小数部分为y ,则(2x y 的值是___.
16.已知:
可用含x =_____. 17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:
3◇2=3×(3-2)+2×(3+2)=13=_____.
18.化简(3+-的结果为_________.
19.已知2x =243x x --的值为_______.
20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记
2
a b c p ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题
21.先阅读下列解答过程,然后再解答:
,a b ,使a b m +=,ab n =,使得
22m +==
)a b ==>
7,12m n ==,由于437,4312+=⨯=,
即:227+=,=
===+。

2
问题:
①__________
=___________
=;
②(请写出计算过程)
【答案】(112;(22.
【分析】
a的形式化简后就可以得出结论了.
【详解】
解:(1
=
=
1
2;
(2
2
【点睛】
本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方根式的运用及二次根式性质的运用.
22.
)÷)(a≠b).
【答案】
【解析】
试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.
试题解析:解:原式=
()()
a b a b --+-
23.小明在解决问题:已知
2a 2﹣8a+1的值,他是这样分析与解的: ∵
=2 ∴a ﹣2=
∴(a ﹣2)2=3,a 2﹣4a+4=3

a 2﹣4a=﹣1
∴2a 2﹣8a+1=2(a 2﹣
4a )+1=2×(﹣1)+1=﹣1
请你根据小明的分析过程,解决如下问题:
(1
+
(2)若
,求4a
2﹣8a+1的值.
【答案】(1)9
;(2)5.
【解析】
试题分析:
(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得
1
==
=
. (2)
先对a
1
,若就接着代入求解,计算量偏大.模仿小明做法,可先计
算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.
解:(1)原式
=1)+
+
+⋯
(2)∵1a ===,
解法一:∵22(1)11)2a -=-= ,
∴2212a a -+= ,即221a a -=
∴原式=24(2)14115a a -+=⨯+=
解法二∴ 原式=24(211)1a a -+-+
24(1)3a =--
211)3=--
4235=⨯-=
点睛:(1
得22=-=-a b ,去掉根号,实现分母有理化.
(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.
24.先化简再求值:4y x ⎛- ⎝,其中30x -=.
【答案】(2x -
【分析】
先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.
【详解】
解:4y x ⎛- ⎝ ((
=-
(
2x =-
∵ 30x -
∴ 3,4x y ==
当3,4x y ==时
原式(23=-==【点睛】
本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.
25.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;
(2)已知
b =,求a 2+b 2的值.
【答案】(1)±
2;(2)2. 【分析】
(1)先根据完全平方公式进行变形,再代入求出即可;
(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.
【详解】
(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,
(a-b )2=4,
a-b=±2.
(2)
a ===
1
2b ===, 2
222()22312a b a b ab +=+-=-=-=⎝⎭
【点睛】
本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.
26.(1)计算:21)-
(2)已知a ,b 是正数,4a b +=,8ab =
【答案】(1)5-2
【分析】
(1)根据完全平方公式、平方差公式可以解答本题;
(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.
【详解】
解:(1)原式21)=-
(31)(23)=---
5=-;
(2)原式=
=
=
a ,
b 为正数,
∴原式
=把4a b +=,8ab =代入,则
原式
== 【点睛】
本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.
27.(1|5-+;
(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.
【答案】(1)5;(2)4
【分析】
(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;
(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.
【详解】
解:(15-+
5)=+
5=+
5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩
, 解得5b =
由此可化简原式得,30a +=
30a ∴+=,20c -=
3a ∴=-,2c =
22((534b a ∴+=--=
【点睛】
可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.
28.2020(1)-
【答案】1
【分析】
先计算乘方,再化简二次根式求解即可.
【详解】
2020(1)-
=1
=1.
【点睛】
本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.
【详解】
解:A 3=,故A 正确;
B -
不能合并,故B 错误;
C 、22(3
=,故C 错误;
D 、=
D 错误; 故选:A .
【点睛】
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
2.D
解析:D
【分析】
直接利用二次根式的混合运算法则分别判断得出答案.
【详解】
解:A
B 、=,故此选项错误;
C2,故此选项错误;
D,正确;
故选:D.
【点睛】
本题考查二次根式的混合运算,熟练掌握计算法则是关键.
3.D
解析:D
【分析】
利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.
【详解】
解:A A选项错误;
B=B选项错误;
C、=C选项错误;
=,所以D选项正确.
D2
故选:D.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
4.B
解析:B
【分析】
根据倒数的定义,即可得到答案.
【详解】


2
故选:B.
【点睛】
本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 5.A
解析:A
【分析】
分别进行二次根式的乘除法、加减法运算,然后选择正确答案.
【详解】
解:==
==
==,原式计算错误;
D. 2220
=-=,原式计算错误;
故应选:A
【点睛】
本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.
6.B
解析:B
【分析】
根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据
=对D进行判断.
a
【详解】
解:A不能合并,所以A选项错误;
B6
=,正确,所以B选项正确;
C、3不能合并,所以C选项错误;
D22
(),所以D选项错误.
=--=
故选:B.
【点睛】
本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.
7.C
解析:C
【分析】
根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.
【详解】
A4
=,此项错误
B、4
=±,此项错误
==,此项正确
C
D==
故选:C.
【点睛】
本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.
解析:C
【分析】
根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.
【详解】
无限不循环小数才是无理数,①错误;
3
=,3的平方根是②正确;
a
=,③错误;
数轴上的点可以表示所有有理数和无理数,④错误
故选:C.
【点睛】
本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.
9.A
解析:A
【分析】
根据公式解答即可.
【详解】
根据题意,若一个三角形的三边长分别为2,3,4,则
2+349
=
222
a b c
p
+++
==
∴其面积为
S====
故选:A.
【点睛】
本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.10.B
解析:B
【分析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
解:A、被开方数含分母,故A错误;
B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;
C、被开方数含能开得尽方的因数,故C错误;
D、被开方数含分母,故D错误;
【点睛】
本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
二、填空题
11.【分析】
先判断b的符号,再根据二次根式的性质进行化简即可.
【详解】
解:∵


所以答案是:
【点睛】
本题考查了二次根式的性质.
解析:
【分析】
先判断b的符号,再根据二次根式的性质进行化简即可.
【详解】
解:∵
4
0,0 a
a
b
-
≥>
∴0
b<
2
a b
b b b
=--
所以答案是:
【点睛】
a
=.
12.15
【解析】
根据题意,由a﹣b=2+,b﹣c=2﹣,两式相加得,得到a﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab﹣bc﹣ac=====15.
故答案为:15.
解析:15
【解析】
根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=222222
2222
a a
b b b b
c c a ac c +++++﹣﹣﹣=
222()()()2a b b c a c -+-+-=15. 故答案为:15.
13.【分析】
先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.
【详解】
解:∵,∴;
∵,∴;
∵,∴;
……
∵,
∴;


故答案为:
【点睛】
本题 解析:221
n n n ++ 【分析】
n 的式子表示其规律,再计算S 的值即可.
【详解】
解:∵1221191=124S =+
+311122===+-;
∵222114912336S =++=7111116623
===+=+-;
∵32211169134144S =+
+=
1311111121234===+=+-; …… ∵()()()2
22222111111n n n S n n n n ++=++=++,
()()2111111111n n n n n n n n ++=
==+=+-+
++;
∴...S =1111111112231
n n =+-++-++-+…+ 111
n n =+-+. 221
n n n +=+ 故答案为:221
n n n ++ 【点睛】
本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111
n n n n =-++的理解. 14.【分析】
先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.
【详解】




【点睛】
本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a
、b 的值.
解析:6【分析】
先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.
【详解】
2
x =
== ∵
23<<
∴425<<
∴4,242a b ==
-=
∴42)6a b -=-=【点睛】
本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值. 15.3
【分析】
先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.
【详解】
因为,
所以,
因为6-的整数部分为x,小数部分为y,
所以x=2,
解析:3
【分析】
先估算34<<,再估算263<<,根据6x ,小数部分为y ,可
得: x =2, y=4然后再代入计算即可求解.
【详解】
因为34<,
所以263<-<,
因为6x ,小数部分为y ,
所以x =2, y=4-,
所以(2x y =(4416133=-=, 故答案为:3.
【点睛】
本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.【解析】
∵=,
∴==
= -==﹣x3+x ,
故答案为:﹣x3+x. 解析:211166
x x -
+ 【解析】

x =-
==1
23=1
46+
= -21116⎡⎤-⎢⎥⎣⎦=3111
66-+=﹣16x 3+116x , 故答案为:﹣16x 3+116
x. 17.5
【解析】
◇==5.
故本题应填5.
点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则
解析:5
【解析】
32==5. 故本题应填5.
点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即
将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.
18.1
【分析】
根据平方差公式进行计算即可.
【详解】
原式=.
故答案为:1.
【点睛】
本题考查二次根式的计算,熟练应用平方差公式是解题关键.
解析:1
根据平方差公式进行计算即可.
【详解】
原式=(223981-=-=.
故答案为:1.
【点睛】
本题考查二次根式的计算,熟练应用平方差公式是解题关键. 19.-4
【分析】
把代入计算即可求解.
【详解】
解:当时,
=-4
故答案为:-4
【点睛】
本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题
解析:-4
【分析】
把2x =243x x --计算即可求解.
【详解】
解:当2x =
243x x --
((2
2423=---
4383=--+
=-4
故答案为:-4
【点睛】
本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.
20.【分析】
根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.
解:由a =4,b =5,c =7,得p ===8.
所以三角形的面积S ===4.
故答案为:4.
【点睛】
本题主
解析:
【分析】
根据a ,b ,c 的值求得p =2
a b c ++,然后将其代入三角形的面积S =
【详解】
解:由a =4,b =5,c =7,得p =
2a b c ++=4572++=8.
所以三角形的面积S .
故答案为:.
【点睛】
本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题
21.无
22.无
23.无
24.无
25.无
26.无
27.无。

相关文档
最新文档