上海莘光学校人教版七年级上册数学期末试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海莘光学校人教版七年级上册数学期末试卷
一、选择题
1.若34(0)x y y =≠,则( )
A .34y 0x +=
B .8-6y=0x
C .3+4x y y x =+
D .
43
x y = 2.如图,将线段AB 延长至点C ,使1
2
BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )
A .4
B .6
C .8
D .12
3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )
A .3∠和5∠
B .3∠和4∠
C .1∠和5∠
D .1∠和4∠
4.将图中的叶子平移后,可以得到的图案是()
A .
B .
C .
D .
5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3
P ⋯,如图所示排列,根据这个规律,点2014P 落在( )
A .射线OA 上
B .射线OB 上
C .射线OC 上
D .射线OD 上
6.点()5,3M 在第( )象限. A .第一象限 B .第二象限
C .第三象限
D .第四象限
7.3的倒数是( ) A .3
B .3-
C .
13
D .13
-
8.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60
C .300×0.2-x =60
D .300×0.8-x =60
9.将方程
212
134
x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+
C .(21)63(2)x x -=-+
D .4(21)123(2)x x -=-+
10.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5x
D .5y 2-3y 2=2
11.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=
b
a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 1
6
(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1
12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .
A .2
B .3
C .4
D .6
二、填空题
13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.
14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.
15.若3750'A ∠=︒,则A ∠的补角的度数为__________.
16.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便
记忆,原理是对于多项44
x y -,因式分解的结果是()()(
)2
2x y x y x y
-++,若取
9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()2
2
162x y +=,于
是就可以把“180162”作为一个六位数的密码,对于多项式32
4x xy -,取36x =,16
y =时,用上述方法产生的密码是________ (写出一个即可).
17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 18.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若
OC 6=,则线段AB 的长为______.
19.小马在解关于x 的一元一次方程
3232
a x
x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.
20.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.
22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.
23.单项式()2
6
a bc -
的系数为______,次数为______.
24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.
三、解答题
25.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12
x 2
﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;
(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 26.计算与解方程:
(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″; (3)
421
123
x x -+-=. 27.化简:4(m +n )﹣5(m +n )+2(m +n ).
=,点C是线段AB的中点,点D是线段BC的中点.
28.如图,线段AB8
()1求线段AD的长;
()2在线段AC上有一点E,1
CE BC
=,求AE的长.
3
29.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).
30.解方程:4x﹣3(20﹣x)+4=0
四、压轴题
31.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
32.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.
(1)求OC的长;
(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;
(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.
33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D 【解析】 【分析】
根据选项进行一一排除即可得出正确答案. 【详解】
解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;
D 中、
43x y
=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】
本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.
2.C
解析:C 【解析】 【分析】
根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】
解:根据题意可得: 设BC x =,
则可列出:()223x x +⨯= 解得:4x =,
1
2
BC AB =
, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.
3.A
解析:A 【解析】 【分析】
两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】
A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,
B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,
C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,
D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】
本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.
4.A
解析:A 【解析】 【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】
解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
解析:A 【解析】 【分析】
根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,
1P 到5P 顺时针,5P 到9P 逆时针,
()2014182515-÷=⋯,
∴点2014P 落在OA 上,
故选A . 【点睛】
本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.
6.A
解析:A 【解析】 【分析】
根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,
∴点()5,3M 在第一象限. 故选A. 【点睛】
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.
7.C
解析:C 【解析】
根据倒数的定义可知. 解:3的倒数是

主要考查倒数的定义,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
8.D
解析:D
【分析】
要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程 【详解】
解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60 故选:D 【点睛】
本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:
(1)利润、售价、进价三者之间的关系; (2)打八折的含义.
9.D
解析:D 【解析】 【分析】
方程两边同乘12即可得答案. 【详解】
方程
212
134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D . 【点睛】
本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.
10.C
解析:C 【解析】
试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.
D.222 532.y y y -=故错误. 故选C.
点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.
11.A
解析:A 【解析】
要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=
3
1
a -,因为无解,所以a ﹣1=0,即a=1.
点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.12.C
解析:C
【解析】
【分析】
根据MN=CM+CN=1
2
AC+
1
2
CB=
1
2
(AC+BC)=
1
2
AB即可求解.
【详解】
解:∵M、N分别是AC、BC的中点,
∴CM=1
2
AC,CN=
1
2
BC,
∴MN=CM+CN=1
2
AC+
1
2
BC=
1
2
(AC+BC)=
1
2
AB=4.
故选:C.
【点睛】
本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题
13.-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】
解:∵单项式2xmy3与﹣5ynx是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案
解析:-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2x m y3与﹣5y n x是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.
14.【解析】
【分析】
由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.
【详解】
解:如图:
由题意,得∠ABD=30°,∠EBC=60°,
∴∠FBC
解析:150︒
【解析】
【分析】
由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.
【详解】
解:如图:
由题意,得∠ABD=30°,∠EBC=60°,
∴∠FBC=90°-∠EBC=90°-60°=30°,
∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,
故答案为150︒.
【点睛】
本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵,
∴的补角=180°-=.
故填.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒
解析:14210'︒
【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵3750'A ∠=︒,
∴A ∠的补角=180°-3750'︒=14210'︒.
故填14210'︒.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒是60进制.
16.36684或36468或68364或68436或43668或46836等(写出一个即可)
【解析】
【分析】
首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码
【详解】
=x(
解析:36684或36468或68364或68436或43668或46836等(写出一个即可)
【解析】
【分析】
首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码
【详解】
324x xy -=x(x+2y)(x-2y).
当x=36,y=16时,x+2y=36+32=68
x-2y=36-32=4.
则密码是36684或36468或68364或68436或43668或46836
故答案为36684或36468或68364或68436或43668
或46836
【点睛】
此题考查因式分解的应用,解题关键在于把字母的值代入
17.-5
【解析】
【分析】
根据题意确定出a 的最大值,b 的最小值,即可求出所求.
【详解】
解:,

,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
<<,
解:459
∴<<,
23
=,
∴=,b3
a2
=-=-,
则原式495
-
故答案为5
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
18.4或36
【解析】
【分析】
分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.
【详解】
解:,
设,,
若点C在线段AB上,则,
点O为AB的中点,
解析:4或36
【解析】
【分析】
分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.
【详解】
=,
解:AC2BC
∴设BC x
=,
=,AC2x
=+=,
若点C在线段AB上,则AB AC BC3x
点O为AB的中点,
3AO BO x 2∴==,x CO BO BC 6x 12AB 312362
∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,
点O 为AB 的中点,
x AO BO 2∴==,3CO OB BC x 6x 4AB 42
∴=+==∴=∴= 故答案为4或36
【点睛】
本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 19.3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】 ∵方程
3232
a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键. 20.8+x =(30+8+x ).
【解析】
【分析】
设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.
【详解】
解:设还要录取女生人,根据题意得:
解析:8+x =
13
(30+8+x ). 【解析】
【分析】 设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的
13
列方程. 【详解】
解:设还要录取女生x 人,根据题意得:
18(308)3
x x +=++. 故答案为:18(308)3x x +=++. 【点睛】
此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.
21.8
【解析】
【分析】
把x=﹣2代入方程2x+a ﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x =﹣2代入方程2x +a ﹣4=0求解即可.
【详解】
把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解.
22.【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
解析:5
x=-
【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
23.【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式的系数为;次数为2+1+1=4;
故答案为;4.
【点睛】

解析:1
6
-
【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式
()2
6
a bc
-的系数为
1
6
-;次数为2+1+1=4;
故答案为
1
6 -;4.
【点睛】
此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题. 24.11
【解析】
【分析】
对整式变形得,再将2a﹣b=4整体代入即可.
【详解】
解:∵2a﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
三、解答题
25.(1)﹣x 2+9xy+2y 2,﹣20;(2)k =4.
【解析】
【分析】
(1)根据|x ﹣2|+(y+1)2=0可以求得x 、y 的值,然后将题目中所求式子化简,再将x 、y 的值代入化简后的式子即可解答本题.
(2)利用多项式的值与x 无关,得出x 的系数和为0,即可得出k 的值,进而求出答案.
【详解】
解:(1)∵(x ﹣2)2+|y+1|=0,
∴x =2、y =﹣1,
则原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy+6y 2
=﹣x 2+9xy+2y 2
=﹣22+9×2×(﹣1)+2×(﹣1)2
=﹣4﹣18+2
=﹣20;
(2)原式=x 2+2x ﹣kx 2+3x 2﹣2x+1
=(4﹣k )x 2+1
∵代数式的值与x 无关,
∴k =4.
【点睛】
本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.
26.(1)﹣2;(2)19°10′;(3)x=47

【解析】
【分析】
(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.
【详解】
解:(1)原式=﹣9+9﹣6+4,
=﹣2;
(2)原式=48°96′68″﹣30°27′8″,
=18°69′60″,
=19°10′;
(3)3(4﹣x )﹣2(2x+1)=6,
12﹣3x ﹣4x ﹣2=6,
﹣7x=﹣4, x=47
. 【点睛】
本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键. 27.m +n .
【解析】
【分析】
把(m +n )看着一个整体,根据合并同类项法则化简即可.
【详解】
解:4()5()2()m n m n m n +-+++
(425)()m n =+-+
m n =+.
【点睛】
本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.
28.(1)6,(2)
83
. 【解析】
【分析】 ()1根据AD AC CD =+,只要求出AC 、CD 即可解决问题;
()2根据AE AC EC =-,只要求出CE 即可解决问题;
【详解】
解:()1AB 8=,C 是AB 的中点,
AC BC 4∴==, D 是BC 的中点,
1CD DB BC 22
∴===, AD AC CD 426∴=+=+=.
()12CE BC 3
=,BC 4=, 4CE 3
∴=, 48AE AC CE 433
∴=-=-=. 【点睛】
本题考查两点间距离、线段的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
29.﹣3
23
. 【解析】
【分析】 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.
【详解】
解:原式=﹣8﹣
23+5=﹣323
. 【点睛】
此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.
30.x =8
【解析】
【分析】
按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.
【详解】
解:4x ﹣60+3x +4=0,
4x +3x =60﹣4,
7x =56,
x =8.
【点睛】
本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1. 四、压轴题
31.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
32.(1)20;(2)t=15s或17s (3)4 3 s.
【解析】
【分析】
(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.
(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.
【详解】
(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度
分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.
(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );
当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .
(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483
>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:
3644804022+==(s ),故提前的时间为:
1243-40=43
(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.
33.(1)DE=6;(2) DE=
2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】
试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,
(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=
12(AC+BC )=12AB=2
a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=
12∠AOB 试题解析:
(1))∵AB=12cm ,
∴AC=4cm ,
∴BC=8cm ,
∵点D 、E 分别是AC 和BC 的中点,
∴CD=2cm ,CE=4cm ,
∴DE=6cm;
(2) 设AC=acm ,
∵点D 、E 分别是AC 和BC 的中点,
∴DE=CD+CE=12(AC+BC )=12
AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;
(3)①当OC 在∠AOB 内部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠NOC=
1
2
∠BOC,∠COM=
1
2
∠COA.
∵∠CON+∠COM=∠MON,
∴∠MON=
1
2
(∠BOC+∠AOC)=
1
2
α;
②当OC在∠AOB外部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
1
2
(∠AOB+∠BOC),∠CON=
1
2
∠BOC.
∵∠MON+∠CON=∠MOC,
∴∠MON=∠MOC-∠CON=
1
2
(AOB+∠BOC)-
1
2
∠BOC=
1
2
∠AOB=
1
2
α.
【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

相关文档
最新文档