华宁县高中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华宁县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若直线2y x =上存在点(,)x y 满足约束条件
30,230,,x y x y x m +-≤⎧⎪
--≤⎨⎪≥⎩
则实数m 的最大值为 A 、1- B 、 C 、
3
2
D 、2 2. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )
A .(0,1)
B .(2,1)
C .(2,0)
D .(0,2)
3. 数列中,若
,,则这个数列的第10项( ) A .19
B .21
C .
D .
4. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A

B

C

D

5.
若函数是R 上的单调减函数,则实数a 的取值范围是( )
A .(﹣∞,2)
B

C .(0,2)
D

6. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
7. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n
D .m ∥α,α∩β=n ,则m ∥n
8. 若函数()y f x =的定义域是[]
1,2016,则函数()()1g x f x =+的定义域是( )
A .(]
0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017
9. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )
A .(0,1)
B .(e ﹣1,1)
C .(0,e ﹣1)
D .(1,e )
10.已知22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
11.已知数列{}n a 的各项均为正数,12a =,114
n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为5,
则n =( )
A .35
B . 36
C .120
D .121
12.复数i ﹣1(i 是虚数单位)的虚部是( )
A .1
B .﹣1
C .i
D .﹣i
二、填空题
13.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .
14.若正方形P 1P 2P 3P 4的边长为1,集合
M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题: ①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
15.
已知椭圆
+
=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈
[

],则该椭圆离心率e 的取值范围为 .
16.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2
()(21)2(21)f x x x =+--既不是奇函数又不是偶函数;
④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
17.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.
三、解答题
19.
(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;
(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.
20
.已知椭圆
+
=1(a >b >0
)的离心率为
,且a 2
=2b .
(1)求椭圆的方程;
(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2
=5上,若存
在,求出m 的值;若不存在,说明理由.
21.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;
(2)求体积V A′﹣ABCD与V E﹣ABD的比值.
22.如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,∠SDC=120°.(1)求SC与平面SAB所成角的正弦值;
(2)求平面SAD与平面SAB所成的锐二面角的余弦值.
23.已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.
24.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率
之积等于﹣.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
华宁县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,
函数x y 2=的图像仅有一个点P 在可行域内,
由230
y x x y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m . 2. 【答案】D
【解析】解:令x=0,则函数f (0)=a 0
+3=1+1=2.
∴函数f (x )=a x
+1的图象必过定点(0,2).
故选:D .
【点评】本题考查了指数函数的性质和a 0
=1(a >0且a ≠1),属于基础题.
3. 【答案】C
【解析】
因为
,所以
,所以数列构成以为首项,2为公差的等差数
列,通项公式为,所以
,所以
,故选C
答案:C
4. 【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数, 故这3个数构成一组勾股数的概率为.
故选:C
5. 【答案】B
4
2541415
4
3
2
【解析】解:∵函数是R上的单调减函数,


故选B
【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.
6.【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.
故选:A.
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
7.【答案】D
【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;
B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;
C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;
D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.
故选D.
【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.
8.【答案】B
【解析】
9.【答案】D
【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.
由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,
所以f (x )=lnx+e , f ′(x )
=,x >0.
∴f (x )﹣f ′(x )=lnx
﹣+e ,
令g (x )=lnx
﹣+﹣e=lnx
﹣,x ∈(0,+∞) 可判断:g (x )=lnx
﹣,x ∈(0,+∞)上单调递增, g (1)=﹣1,g (e )=1
﹣>0, ∴x 0∈(1,e ),g (x 0)=0,
∴x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是(1,e ) 故选:D .
【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.
10.【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

11.【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴2
44(1)4n a n n =+-=,由0n a >

n a =
111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n
项和为
1111
1)(1)52222
n +++==,∴120n =,选C . 12.【答案】A
【解析】解:由复数虚部的定义知,i ﹣1的虚部是1,
故选A .
【点评】该题考查复数的基本概念,属基础题.
二、填空题
13.【答案】 (﹣3,21) .
【解析】解:∵数列{a n}是等差数列,
∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,
由待定系数法可得,解得x=3,y=6.
∵﹣3<3a3<3,0<6a6<18,
∴两式相加即得﹣3<S9<21.
∴S9的取值范围是(﹣3,21).
故答案为:(﹣3,21).
【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.
14.【答案】①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
15.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);
F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e ≤﹣1;
故答案为:[

﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
16.【答案】①② 【解析】
试题分析:子集的个数是2n
,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.
对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n
个;对于
奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
18.【答案】11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x
x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题
19.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.
(2)由(1)与∠B=60°知△ABC为正三角形,
又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE2=AE2+AD2-2AD·AE cos A.

即x2=(2-y)2+22-2(2-y)·2×1
2
∴x2-y2=4-2y,①
由切割线定理得DE2=DF·DC,
即x2=y(y+2),
∴x2-y2=2y,②
由①②联解得y=1,x=3,∴ED= 3.
20.【答案】
【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,
解得a=,b=c=1
故椭圆的方程为x2+=1;
(2)设A(x1,y1),B(x2,y2),
线段AB的中点为M(x0,y0).
联立直线y=x+m与椭圆的方程得,
即3x2+2mx+m2﹣2=0,
△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,
x1+x2=﹣,
所以x0==﹣,y0=x0+m=,
即M(﹣,).又因为M点在圆x2+y2=5上,
可得(﹣)2+()2=5,
解得m=±3与m2<3矛盾.
故实数m不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.
21.【答案】
【解析】(1)证明:设BD交AC于M,连接ME.
∵ABCD为正方形,∴M为AC中点,
又∵E为A′A的中点,
∴ME为△A′AC的中位线,
∴ME∥A′C.
又∵ME⊂平面BDE,A′C⊄平面BDE,
∴A′C∥平面BDE.
(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.
22.【答案】
【解析】解:如图,过点D作DC的垂线交SC于E,以D为原点,
分别以DC,DE,DA为x,y,z轴建立空间直角坐标系.
∵∠SDC=120°,
∴∠SDE=30°,
又SD=2,则点S到y轴的距离为1,到x轴的距离为.
则有D(0,0,0),,A(0,0,2),C(2,0,0),B(2,0,1).
(1)设平面SAB的法向量为,
∵.
则有,取,
得,又,
设SC与平面SAB所成角为θ,
则,
故SC与平面SAB所成角的正弦值为.
(2)设平面SAD的法向量为,
∵,
则有,取,得.
∴,
故平面SAD与平面SAB所成的锐二面角的余弦值是.
【点评】本题是中档题,考查直线与平面所成角正弦值、余弦值的求法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.
23.【答案】
【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义
【试题解析】(Ⅰ)函数定义域为

又,所求切线方程为,即
(Ⅱ)函数在上恰有两个不同的零点,
等价于在上恰有两个不同的实根
等价于在上恰有两个不同的实根,
令则
当时,,在递减;
当时,,在递增.
故,又.
,,

24.【答案】
【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)
化简得x2+3y2=4(x≠±1).
故动点P轨迹方程为x2+3y2=4(x≠±1)
(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)
则.
因为sin∠APB=sin∠MPN,
所以
所以=
即(3﹣x0)2=|x02﹣1|,解得
因为x02+3y02=4,所以
故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.。

相关文档
最新文档