高庙镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高庙镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•福州)计算3.8×107﹣3.7×107,结果用科学记数法表示为()
A. 0.1×107
B. 0.1×106
C. 1×107
D. 1×106
2.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()
A. 0
B. 3
C. 4
D. 8
3.(2分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()
A. 四棱锥
B. 四棱柱
C. 三棱锥
D. 三棱柱
4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()
A. 2.3×105辆
B. 3.2×105辆
C. 2.3×106辆
D. 3.2×106辆
5.(2分)(2015•苏州)2的相反数是()
A. 2
B.
C. -2
D. -
6.(2分)(2015•漳州)如图是一个长方体包装盒,则它的平面展开图是()
A. B.
C. D.
7.(2分)首都北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为
A. B. C. D.
8.(2分)(2015•南宁)3的绝对值是()
A. 3
B. -3
C.
D.
9.(2分)(2015•巴彦淖尔)﹣3的绝对值是()
A. ﹣3
B. 3
C. ﹣3﹣1
D. 3﹣1
10.(2分)-5的绝对值为()
A. -5
B. 5
C.
D.
二、填空题
11.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.
12.(1分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=________ .
13.(1分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为 ________ .
14.(1分)(2015•岳阳)单项式的次数是________ .
15.(1分)(2015•遂宁)把96000用科学记数法表示为________ .
16.(1分)(2015•张家界)由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.
三、解答题
17.(15分)双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.
(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?
(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.
(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.
18.(10分)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7
(1)求A等于多少?
(2)若|a+1|+(b﹣2)2=0,求A的值.
19.(16分)同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)|-4+6|=________;|-2-4|=________;
(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;
(3)若数轴上表示数a的点位于-4与6之间,求|a+4|+|a-6|的值;
(4)当a=________时,|a-1|+|a+5|+|a-4|的值最小,最小值是________;
(5)当a=________时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是________.20.(5分)如图所示,在数轴上A点表示数aB点表示数,且a、b满足,
点A、点B之间的数轴上有一点C,且BC=2AC,
(1)点A表示的数为________,点B表示的数为________;则C点表示的数为________.
(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.
①经过________秒后,P、Q两点重合;
②点P与点Q之间的距离PQ=1时,求t的值.________
21.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪
3
7
(1)【问题解决】
①当三角形内有4个点时,最多剪得的三角形个数为________;
②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;
③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
22.(6分)小明拿扑克牌若千张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.
(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?
(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)
23.(4分)
(1)材料1:一般地,n个相同因数a相乘:记为如,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=________
=________
(2)材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,
2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:
①计算5!=________;
②已知x为整数,求出满足该等式的________
24.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;
(2)求b a的值.
高庙镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题
1.【答案】D
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:3.8×107﹣3.7×107
=(3.8﹣3.7)×107
=0.1×107
=1×106.
故选:D.
【分析】直接根据乘法分配律即可求解.
2.【答案】B
【考点】探索数与式的规律
【解析】【解答】解:21=2,22=4,23=8,24=16,
25=32,26=64,27=128,28=256,
…,
末位数字以2,4,8,6循环,
原式=2+22+23+24+…+22015﹣1=﹣1=22016﹣3,
∵2016÷4=504,
∴22016末位数字为6,
则2+22+23+24+…+22015﹣1的末位数字是3,
故选B
【分析】观察已知等式,发现末位数字以2,4,8,6循环,原式整理后判断即可得到结果.3.【答案】A
【考点】几何体的展开图
【解析】【解答】如图所示:这个几何体是四棱锥.
故选:A.
【分析】根据四棱锥的侧面展开图得出答案.
4.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】2014年底机动车的数量为:3×105+2×106=2.3×106.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
5.【答案】C
【考点】相反数
【解析】【解答】根据相反数的含义,可得
2的相反数是:﹣2.
故选:C.
【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可6.【答案】A
【考点】几何体的展开图
【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,
A、可以拼成一个长方体;
B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A.
【分析】由平面图形的折叠及长方体的展开图解题.
7.【答案】D
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】.
故选D.
8.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】解:|3|=3.
故选A.
【分析】直接根据绝对值的意义求解.
9.【答案】B
【考点】绝对值及有理数的绝对值
【解析】【解答】﹣3的绝对值是3,
故选B.
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
10.【答案】B
【考点】绝对值及有理数的绝对值
【解析】
【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
【解答】-5的绝对值为5,
故选:B.
【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
二、填空题
11.【答案】2
【考点】探索数与式的规律
【解析】【解答】解:根据题意得,a2==2,
a3==﹣1,
a4==,
…,
依此类推,每三个数为一个循环组依次循环,
∵2015÷3=671…2,
∴a2015是第671个循环组的第2个数,与a2相同,
即a2015=2.
故答案为:2.
【分析】根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.
12.【答案】5
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将272000用科学记数法表示为2.72×105.
∴n=5.
故答案为5.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
13.【答案】3.7×104
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将37000用科学记数法表示为3.7×104.
故答案为:3.7×104.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
14.【答案】5
【考点】单项式
【解析】【解答】解:单项式﹣x2y3的次数是2+3=5.
故答案为:5.
【分析】根据单项式的次数的定义:单项式中,所有字母的指数和叫做这个单项式的次数解答.
15.【答案】9.6×104
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:把96000用科学记数法表示为9.6×104.
故答案为:9.6×104.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
16.【答案】1.0×1011
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:100 000 000 000=1.0×1011.
故答案为:1.0×1011.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
17.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)
(2)解:x≤6时,60x+(50-3x)×3=150+51x;7≤x≤12时,60x+(50-3x)×3-50=100+51x;13≤x≤16时,60x+(50-3x)×3-100=50+51x
(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12.答:共买了12个羽毛球拍.
【考点】整式的加减运算,一元一次方程的实际应用-销售问题
【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
18.【答案】(1)解:∵A﹣2B=A﹣= ,∴A=
(2)解:依题意得:,,解得:,.原式A=
.
【考点】利用整式的加减运算化简求值
【解析】【分析】(1)利用被减数等于差加减数,将B代入,就可得出A=7a2-7ab+2(-4a2+6ab+7),再利用去括号法则去括号,然后合并同类项。
(2)根据几个非负数之和为0,则这几个数是0,建立关于a、b的方程,求出方程的解,再将a、b的值代入(1)中化简的代数式求值。
19.【答案】(1)2;6
(2)解:即整数x与-2的距离加x与1的距离和为3,则-2≤x≤1,
答所有符合条件的整数x有:-2,-1,0,1
(3)解:即:-4≤x≤6,则|a+4|+|a-6|=10,
故:答案为10
(4)1;9
(5)1;4n+1
【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值
【解析】【解答】解:(1)答案为:2,6;
(4 )取-5,1,4三个数的中间值即可,即a=1,
则最小值为9,
故答案为1,9;
(5 )依据(4)取-2n,-2n+1,…1,2,3…,2n+1的中间值1,
则最小值为2n+1-(-2n)=4n+1,
故:答案为1,4n+1.
【分析】(1)|-4+6|表示-4与-6差的绝对值,先算出其差,再根据绝对值的意义去掉绝对值符号即可;同理|-2-4| 表示-2与4差的绝对值,先算出其差,再根据绝对值的意义去掉绝对值符号即可;
(2)|x+2|+|x-1|=3 表示的意义是:整数x与-2的距离加x与1的距离和为3 ,故表示x的点应该位于-2与1之间,从而得出x的取值范围-2≤x≤1,再找出这个范围内的整数即可;
(3)由题意知:-4≤a≤6,故a+4≥0,a-6≤0,根据绝对值的意义即可去掉绝对值符号,再合并同类项即可;(4)|a-1|+|a+5|+|a-4| 表示的是a到1,-5,4的距离和,根据两点之间线段最短,故要使|a-1|+|a+5|+|a-4|的值最小,则a=1,把a=1代入即可算出答案;
(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
20.【答案】(1)-3;9;1
(2)2;分三种情况:如果点P在点Q的左边,由题意得3t+1+8-t=12,解得t= ;如果t<4时,点
P在点Q的右边,由题意得3t-1+8-t=12,解得t= ;如果4<t<8时,点P到达点B,停止运动,此时
QB=1,由题意得8-t=1,解得t=7.即当t= 或或7秒时,点P与点Q之间的距离为1个单位长度.【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,一元一次方程的实际应用-几何问题
【解析】【解答】解:(1)∵|2a+6|+|b-9|=0,
∴2a+6=0,b-9=0,
∴a=-3,b=9,
即点A表示的数为-3,点B表示的数为9;
设C点表示的数为x,则-3<x<9,根据BC=2AC,
得9-x=2[x-(-3)],
解得x=1.
即C点表示的数为1;
(2 )根据题意得,
AC=AP-CQ
∴3t-t=3+1
解得,t=2;
【分析】(1)利用几个非负数之和为0,则每一个数都是0,求出a、b的值,就可得出点A,B表示的数,再根据BC=2AC求出点C表示的数。
(2)①根据路程=速度×时间,可得出AP=2t,CQ=t,根据AC=AP-CQ,列方程求出t的值;②分三种情况讨论:如果点P在点Q的左边;如果t<4时,点P在点Q的右边;如果4<t<8时,点P到达点B,停止运动,此时QB=1,分别建立关于t的方程,求出t的值。
21.【答案】(1)9;2;2n+1
(2)解:1+3+5+7+…+(2n-1)+(2n+1)=
= (n+1)(1+2n+1)
=(n+1)2
=n2+2n+1.
【考点】探索图形规律
【解析】【解答】解:(1)①∵当三角形内点的个数为1时,最多可以剪得3个三角形;
当三角形内点的个数为2时,最多可以剪得5个三角形;
当三角形内点的个数为3时,最多可以剪得7个三角形;
∴当三角形内点的个数为4时,最多可以剪得9个三角形;
故答案为:9;
②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;
故答案为:2;
③∵1×2+1=3,2×2+1=5,3×2+1=7,
∴当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
故答案为:2n+1;
【分析】(1)①探索图形规律的题,根据题意画出图形即可得出答案;②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;③通过观察,三角形内的点每增加1个,所剪出的三角形的个数就增加两个,而所剪出的三角形的个数是从1开始的连续奇数个,根据奇数的表示方法,当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
(2)根据补项法,1+3+5+7+…+(2n-1)+(2n+1)=
,根据连续奇数和的计算方法,用首加尾的和为(2n+1+1)共有这样的加数和的个数为,从而利用用首加尾的
和再乘以这样的和的个数即可算出答案。
22.【答案】(1)1
(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.
【考点】列式表示数量关系,整式的加减运算
【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,解得y=x+2,
即y是x的一次函数,
当x=8时,y=10,
把x=8,y=10代入x+2-y+1=1.
最后中间一堆剩1张牌,
故答案为:1;
【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y的值,进而即可得出答案;
(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。
23.【答案】(1)2;
(2)120;解:由题意得:=1 即|x−1|=6
∴x-1=6或x-1=-6
解之:x=7或﹣5
【考点】有理数的乘方,定义新运算
【解析】【解答】解:(1)材料1:。
(2)材料2:①5!=5×4×3×2×1=120【分析】(1)根据对数的运算法则,先求出log216和log381的值,就可求出答案。
(2)①根据新定义的法则直接计算;②根据新定义的法则,列出关于x的方程,求解即可。
24.【答案】(1)解:由题意,
∵无论为何值时,的值始终
不变∴∴
(2)解:由(1)得代入中,得=4 故答案为4
【考点】代数式求值,有理数的乘方
【解析】【分析】(1)根据整式加减混合运算的方法求出A-2B=(a-2)x2+(b+2)y-7,根据A-2B的值始终不变,可得a-2=0,b+2=0解方程即可求解。
(2)把a,b的值代入计算即可。