八年级上册三角形填空选择综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册三角形填空选择综合测试卷(word 含答案)
一、八年级数学三角形填空题(难)
1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.
【答案】78.
【解析】
【分析】
利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到
∠DBC=
12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12
∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.
【详解】
∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D
∴∠DBC=12∠ABC ,∠ACD=12
(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,
∴∠D=12
∠A=30︒, ∵84BEH ︒∠=,
∴∠DEH=96︒,
∵EFD ∆与EFH ∆关于直线EF 对称,
∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,
∵∠DFG=∠D+∠DEG=78︒,
∴n=78.
故答案为:78.
【点睛】
此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12
∠A=30︒是解题的关键.
2.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.
【答案】85°
【解析】
【分析】
根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.
【详解】
解:
∵∠BFE =2∠1,∠BCD =2∠2,
又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,
∴2∠1+(180°-2∠2)+70°+80°=360°,
∴∠1-∠2=15°;
∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,
∴∠1+80°+(180°-∠2)+∠P =360°,
∴∠1-∠2+∠P =100°,
∴∠P =85°,
故答案为:85°.
【点睛】
本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.
3.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )
A.144°B.84°C.74°D.54°【答案】B
【解析】
正五边形的内角是∠ABC=()
52180
5
-⨯
=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角
是∠ABE=∠E=()
62180
6
-⨯
=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–
120°–120°–36°=84°,故选B.
4.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.
【答案】12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
5.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.
【答案】22cm,26cm
【解析】
【分析】
题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)当腰是6cm时,周长=6+6+10=22cm;
(2)当腰长为10cm时,周长=10+10+6=26cm,
所以其周长是22cm或26cm.
故答案为:22,26.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
6.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.
【答案】40︒.
【解析】
【分析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
【详解】
÷=,
连续左转后形成的正多边形边数为:4559
︒÷=︒.
则左转的角度是360940
故答案是:40︒.
【点睛】
本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
7.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角
∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
8.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.
【答案】120.
【解析】
【分析】
由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.
【详解】
解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,
∴该正多边形的边数为n=360°÷15°=24,
则一共走了24×5=120米,
故答案为:120.
【点睛】
本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.
9.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求
∠ABC=∠BAD=45°.
【详解】
∵AD⊥BC于D,BE⊥AC于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE(对顶角相等)
∴∠EAF=∠DBF,
在Rt△ADC和Rt△BDF中,
CAD FBD
BDF ADC
BF AC
∠∠


∠∠







∴△ADC≌△BDF(AAS),
∴BD=AD,
即∠ABC=∠BAD=45°.
故答案为45.
【点睛】
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
10.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果
∠ABP=20°,∠ACP=50°,则∠P=______°.
【答案】30
【解析】
【分析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
二、八年级数学三角形选择题(难)
11.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()
A.1
3
B.
7
10
C.
3
5
D.
13
20
【答案】B
【解析】
【分析】
连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是
△BCE的面积相等,得4x+x=2y+x+y,解得y=4
3
x,再根据△ABC的面积是3即可求得x、y
的值,从而求解.
【详解】
连接CP,
设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,
∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1
∴△ABD的面积是4x+2y
∴△ABP的面积是4x.
∴4x+x=2y+x+y,
解得y=4
3
x.
又∵△ABC的面积为3
∴4x+x=3
2

x=
3
10

则四边形PDCE的面积为x+y=
7
10

故选B.
【点睛】
此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.
12.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()
A.x>5 B.x<7 C.2<x<12 D.1<x<6
【答案】D
【解析】
如图所示:
AB=5,AC=7,
设BC=2a,AD=x,
延长AD至E,使AD=DE,
在△BDE与△CDA中,
∵AD=DE,BD=CD,∠ADC=∠BDE,
∴△BDE≌△CDA,
∴AE=2x,BE=AC=7,
在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,
∴1<x<6.
故选D.
13.已知如图,△ABC中,∠ABC=50°,∠BAC=60°,BO、AO分别平分∠ABC 和∠BAC,求∠BCO的大小()
A.35°B.40°C.55°D.60°
【答案】A
【解析】
分析:先根据三角内角和可求出∠ACB=180°-50°-60°=70°,根据角平分线的性质:角平分线上的
点到角两边的距离相等可得:点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,然后可得: 点O到AC和BC的距离相等,再根据角平分线的判定可得:OC平分∠ACB,所
以∠BCO =1
2
∠ACB=35°.
详解: 因为∠ABC=50°,∠BAC=60°,
所以∠ACB=180°-50°-60°=70°,,
因为BO,AO分别平分∠ABC和∠BAC,
所以点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,所以点O到AC和BC的距离相等,
所以OC平分∠ACB,
所以∠BCO =1
2
∠ACB=35°.
点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.
14.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则
∠BMN的度数为( )
A.45°B.50°C.60°D.65°
【答案】B
【解析】
分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,
∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,
∴BN平分∠MBC,CN平分∠MCB,
∴NE=NG,NF=NG,
∴NE=NF,
∴MN 平分∠BMC ,
∴∠BMN=
12
∠BMC , ∵∠A=60°, ∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,
根据三等分,∠MBC+∠MCB=
23 (∠ABC+∠ACB)=2 3
×120°=80°. 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°. ∴∠BMN=
12
×100°=50°; 故选:B.
点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.
15.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )
A .270
B .210
C .180
D .150
【答案】B
【解析】
【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.
【详解】
如图,AB 与DE 交于点G ,AB 与EF 交于点H ,
∵∠1=∠A+∠DGA ,∠2=∠B+∠FHB,
∠DGA=∠BGE,∠FHB=∠AHE,
在三角形GEH 中,∠BGE+∠AHE =180︒-∠E=120︒,
∴∠1+∠2= ∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.
【点睛】
本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.
16.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )
A .60︒
B .65︒
C .70︒
D .75︒
【答案】C
【解析】
【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.
【详解】
设直线n 与AB 的交点为E 。

∵AED ∠是BED ∆的一个外角,
∴1AED B ∠=∠+∠,
∵45B ∠=︒,125∠=︒,
∴452570AED ∠=︒+︒=︒,
∵m n ,
∴270AED ∠=∠=︒.
故选C .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
17.一个多边形内角和是900°,则这个多边形的边数是 ( )
A .7
B .6
C .5
D .4
【答案】A
【解析】
【分析】
n 边形的内角和为(n -2)180°,由此列方程求n 的值即可.
【详解】
设这个多边形的边数为n ,
则:(n -2)180°=900°,
解得n =7.
故答案为:A.
【点睛】
本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.
18.若正多边形的内角和是540︒,则该正多边形的一个外角为()
A.45︒B.60︒C.72︒D.90︒
【答案】C
【解析】
【分析】
n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180
的360︒,依此可以求出多边形的一个外角.
【详解】
正多边形的内角和是540︒,
∴多边形的边数为54018025
︒÷︒+=,
多边形的外角和都是360︒,
∴多边形的每个外角360572
==.
÷︒
故选C.
【点睛】
本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.
19.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()
∠=,则1
244
α-
A.14B.16C.90α
-D.44
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得
∠3=∠1+30°,进而得出结论.
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:
∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
20.一个多边形的每个内角都等于120°, 则此多边形是( )
A.五边形B.七边形C.六边形D.八边形
【答案】C
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣
120°=60°,∴边数n=360°÷60°=6.
故选C.
【点睛】
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.。

相关文档
最新文档