八年级数学四边形动点问题练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学动点专题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
注重对几何图形运动变化能力的考查
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;
(3)数形结合思想;(4)分类思想;(5)转化思想等.
1、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.
(1)、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;
(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.
2.梯形ABCD 中,AD∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿
已知P 、Q 两点分别从A 、C 同时出发,动时间为t 秒,问:
(1)t 为何值时,四边形PQCD 是平行四边形? (2)在某个时刻,四边形PQCD (3)t 为何值时,四边形PQCD 是直角梯形? (4)t 为何值时,四边形PQCD 是等腰梯形? 3.如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点
P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 出发,当其中一点到达点D 时,另一点也随之停止运动,设运动
时间为t(s),t 为何值时,四边形APQD 也为矩形?
4.如图,在等腰梯形ABCD 中,AB ∥DC ,5AD BC cm ==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。

设运动时间为t 秒。

(1)求证:当t =2
3时,四边形APQD 是平行四边形;
D A
M O F N E
B C D
(2)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。

5. 4. 如图所示,△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN//BC ,设MN 交∠BCA 的平分线于点E ,交∠B
C A 的外角平分线于F 。

(1)求让:EO FO =; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论。

3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),
点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ?
(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少? (3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?
若存在,求出这时的t 值;若不存在,请说明理由.
2、(河北卷)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点3
个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4同
PDQ .设运动时间为t (秒).
(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式;
(2)t 为何值时,四边形PQBA 是梯形?
(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.
3、(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。

OA 、OB 的长
分别是方程x 2-14x +48=0的两根(OA >OB),直线BC 平分∠ABO 交x
轴于C 点,P 为BC 上一动点,P 点以每秒1个单位的速度从B 点开始沿BC 方向移动。

(1)设△APB 和△OPB 的面积分别为S 1、S 2,求S 1∶S 2的值; (2)求直线BC 的解析式; (3)设PA -PO =m ,P 点的移动时间为t 。

①当0<t ≤54时,试求出m 的取值范围; ②当t >54时,你认为m 的取值范围如何(只要求写出结论)? 4、在ABC ∆中,
,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有
两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿
AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。

过点P 作
PE ∥BC 交AD 于点E ,连结EQ 。

设动点运动时间为x 秒。

(1)用含
x 的代数式表示AE 、DE 的长度;
(2)当点Q 在BD (不包括点B 、D )上移动时,设EDQ ∆的面积为
2()y cm ,
求y 与月份x 的函数关系式,并写出自变量x 的取值范围; A P C B P
(3)当x 为何值时,EDQ ∆为直角三角形。

5、(杭州)在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。

动点,P Q 同时从点B 出发,点P 沿,,BA AD DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,两点运动时的速度都是1/cm s 。

而当点P 到达点A 时,点Q 正好到达点C 。

设,P Q 同时从点B 出发,经过的时间为()t s 时,BPQ ∆的面积为()2y cm (如图2)。

分别以,t y 为横、纵坐标建立直角坐标系,已知点P 在AD 边上从A 到D 运动时,y 与t 的函数图象是图3中的线段MN 。

(1)分别求出梯形中,BA AD 的长度;
(2)写出图3中,M N 两点的坐标;
(3)分别写出点P 在BA 边上和DC 边上运动时,y 与t 的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y 关于t 的函数关系的大致图象。

6
30ABO
=∠.动点P 在B
M N ,作等边PMN △. (1)求直线AB 的解析式;
(2)求等边PMN △的边长(用t 的代数式表示),并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值;
(3)如果取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.
7、两块完全相同的直角三角板ABC 和DEF 如图1BC =EF =3.固定Rt △ABC 不动,让Rt △DEF 沿CB 形重叠阴影部分的面积为y .
(1)如图2,求当x =2
1时,y 的值是多少? (2)如图3,当点E 移动到AB 上时,求x 、y (3)求y 与x 之间的函数关系式;
8、(重庆课改卷)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.
(1)当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;
(2)设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;
(图1) (图2) (图3) (图1) (图2)
E (3)对于(2)中的结论是否存在这样的x 的值;使得重叠部分的面积等于原ABC ∆面积的
14
?若不存在,请说明理由. 4. 如图所示,△ABC 中,点O 是AC
边上的一个动点,过O 作直线MN//BC ,设MN 交∠
∠BCA 的外角平分线于F 。

(1)求让:EO FO =; (2)当点O 运动到何处时,四边形AECF (3)若AC 边上存在点O ,使四边形AECF
5. 如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D ’处,求重叠部分⊿AFC 的面积.
6. 如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。

(1)试判断四边形PQEF 是正方形并证明。

(2)PE 是否总过某一定点,并说明理由。

(3)四边形PQEF 的顶点位于何处时,
其面积最小,最大?各是多少?
7. 已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC B 、C
两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点G .
⑴求证:四边形EFOG 的周长等于2 OB ;
⑵请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC 边形EFOG 的周长等于2 OB 9、(山东青岛课改卷 )如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC =8cm ,BC =6cm ,∠C =90°,EG =4cm ,∠EGF =90°,O 是△EFG 斜边上的中点.
如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB
方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG
也随之停止平移.设运动时间为x (s ),FG 的延长线交 AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况). (1)当x 为何值时,OP ∥AC ?
(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围.
(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
或4.42 =19.36,4.52 =20.25,4.62 =21.16)
10、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移
动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题:
(1)当t 为何值时,△PBQ 是直角三角形?
(2)设四边形APQC 的面积为y (cm 2),求y 与t 的
关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;
C B
D A 图1 122图3 C 2D 2C 1B D 1A 图10。

相关文档
最新文档