华阴市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华阴市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知集合P={x|x≥0},Q={x|≥0},则P∩Q=()
A.(﹣∞,2)B.(﹣∞,﹣1)C.[0,+∞)D.(2,+∞)
2.实数a=0.2,b=log0.2,c=的大小关系正确的是()
A.a<c<b B.a<b<c C.b<a<c D.b<c<a
3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()
A.B.C.D.
4.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()
A.2或0 B.0 C.﹣2或0 D.﹣2或2
5.将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.B.C.D.
6.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件
7.已知椭圆(0<b<3),左右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若|AF2|+|BF2|的最大值为8,则b的值是()
A.B.C.D.
8.已知复数z满足zi=1﹣i,(i为虚数单位),则|z|=()
A.1 B.2 C.3 D.
9.设有直线m、n和平面α、β,下列四个命题中,正确的是()
A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β
C.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α
10.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()
A .A ⊆
B B .
C ⊆B C .
D ⊆C D .A ⊆D
11.已知函数f (x )=Asin (ωx+φ)(a >0,
ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )
A .f (x )=sin (3x+)
B .f (x )=sin (2x+)
C .f (x )=sin (x+)
D .f (x )=sin (2x+)
12.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②线性回归直线一定经过样本中心点,;
③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;
④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1
B .2
C .3
D .4
二、填空题
13.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .
14.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
15.命题“若1x ≥,则2421x x -+≥-”的否命题为

16.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .
17.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .
18.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为

三、解答题
19.(本小题满分12分) 在等比数列{}n a 中,3339,22
a S =
=.
(1)求数列{}n a 的通项公式; (2)设221
6log n n b a +=,且{}n b 为递增数列,若1
1
n n n c b b +=
,求证:12314
n c c c c ++++
<

20
.已知椭圆
+
=1(a >b >0)的离心率为
,且过点(

).
(1)求椭圆方程;
(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
21.已知函数()2
1ln ,2
f x x ax x a R =-
+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;
(2)若2a =-,正实数12,x x 满足()()12120f x
f x x x ++=,证明12x x +≥.
22.设数列的前项和为,且满足
,数列
满足
,且
(1)求数列和
的通项公式 (2)设,数列
的前项和为,求证:
(3)设数列
满足(
),若数列
是递增数列,求实数
的取值范围。

23.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;
(2)设1AP =,AD =P ABD -的体积V =
,求A 到平面PBC 的距离.
111]
24.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会
(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.
华阴市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:由Q中的不等式变形得:(x+1)(x﹣2)≥0,且x﹣2≠0,
解得:x≤﹣1或x>2,即Q=(﹣∞,﹣1]∪(2,+∞),
∵P=[0,+∞),
∴P∩Q=(2,+∞),
故选:D.
2.【答案】C
【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,
即0<a<1,b<0,c>1,
∴b<a<c.
故选:C.
【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.
3.【答案】A
【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),
直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;
故.
故选A.
【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.
4.【答案】D
【解析】解:由题意:函数f(x)=2sin(ωx+φ),
∵f(+x)=f(﹣x),
可知函数的对称轴为x==,
根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f()=2或﹣2
故选D.
5.【答案】D
【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:
当x=时,sin(2×﹣)=0;
∴(,0)就是函数的一个对称中心坐标.
故选:D.
【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.
6.【答案】C
【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,
若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,
故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.7.【答案】D
【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,
∴|AB|的最小值为4,
当AB⊥x轴时,|AB|取得最小值为4,
∴=4,解得b2=6,b=.
故选:D.
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
8.【答案】D
【解析】解:∵复数z满足zi=1﹣i,(i为虚数单位),
∴z==﹣i﹣1,
∴|z|==.
故选:D.
【点评】本题考查了复数的化简与运算问题,是基础题目.
9.【答案】D
【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;
C不对,由面面垂直的性质定理知,m必须垂直交线;
故选:D.
10.【答案】B
【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,
矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,
正方形是矩形,所以C⊆B.
故选B.
11.【答案】D
【解析】解:由图象知函数的最大值为1,即A=1,
函数的周期T=4(﹣)=4×=,
解得ω=2,即f(x)=2sin(2x+φ),
由五点对应法知2×+φ=,
解得φ=,
故f(x)=sin(2x+),
故选:D
12.【答案】B
【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;
②线性回归直线一定经过样本中心点(,),故②正确;
③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.
故选:B.
【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.二、填空题
13.【答案】.
【解析】解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,
并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.
Rt△AOC中,r=AO==,
从而弧长为αr=2×=,
故答案为.
【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.14.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k ,由图象可以读出:0<k <1时,y=k 和f (x )有3个交点, 即方程f (x )=k 有三个不同的实根, 故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.
15.【答案】若1x <,则2421x x -+<- 【解析】
试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题.
16.【答案】 60° .
【解析】解:∵|﹣|=,


=3,
∴cos <>=
=

∴与的夹角为60°. 故答案为:60° 【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的
表示式.
17.【答案】

【解析】解:∵a 是甲抛掷一枚骰子得到的点数,
∴试验发生包含的事件数6,
∵方程x2+ax+a=0 有两个不等实根,
∴a2﹣4a>0,
解得a>4,
∵a是正整数,
∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
18.【答案】
【解析】解:作的可行域如图:
易知可行域为一个三角形,
验证知在点A(1,2)时,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是,
故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
三、解答题
19.【答案】(1)1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)证明见解析.
【解析】
试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)
由于{}n b 为递增数列,所以取1
162n n a -⎛⎫
=⋅- ⎪
⎝⎭
,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫
=
==- ⎪++⎝


其前项和为()111
4414
n -<+.
考点:数列与裂项求和法.1 20.【答案】
【解析】解:(1)依题意可得,解得a=2,b=1
所以椭圆C 的方程是…
(2)当k 变化时,m 2
为定值,证明如下:
由得,(1+4k 2)x 2+8kmx+4(m 2
﹣1)=0.…
设P (x 1,y 1),Q (x 2,y 2).则x 1+x 2=
,x 1x 2=…(•) …
∵直线OP 、OQ 的斜率依次为k 1,k 2,且4k=k 1+k 2,
∴4k=
=
,得2kx 1x 2=m (x 1+x 2),…
将(•)代入得:m 2
=,…
经检验满足△>0.…
【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.
21.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,
a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭
;(2)证明见解析. 【解析】

题解析:
(2)当2a =-时,()2
ln ,0f x x x x x =++>,
由()()12120f x f x x x ++=可得2
2
121122ln 0x x x x x x ++++=, 即()()2
12121212ln x x x x x x x x +++=-,
令()12,ln t x x t t t ϕ==-,则()11
1t t t t
ϕ-'=-=

则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,
所以()()11t ϕϕ≥=,所以()()2
12121x x x x +++≥,
又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1
考点:函数导数与不等式.
【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】 【解析】
解:∵S n =2-a n ,即a n +S n =2,∴a n +1+S n +1=2. 两式相减:a n +1-a n +S n +1-S n =0.
即a n +1-a n +a n +1=0,故有2a n +1=a n ,∵a n ≠0,

∵b n +1=b n +a n (n =1,2,3,…),
得b 2-b 1=1,




将这n -1个等式相加,得
又∵b 1=1,.
(2)证明:.
而 ①



=8-(n =1,2,3,…).
∴T n <8. (3)由(1)知
由数列是递增数列,∴对
恒成立,

恒成立,

恒成立, 当为奇数时,即恒成立,∴, 当为偶数时,即恒成立,∴

综上实数的取值范围为
23.【答案】(1)证明见解析;(2)13
. 【解析】

题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .
(2)1366V PA AB AD AB =
=,由4
V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平
面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313
13
PA AB AH PB ==,所以A 到平面PBC 的距离为
13
.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.
24.【答案】
【解析】解:(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,
则“这2名抗战老兵参加纪念活动的环节数相同”为事件,
根据题意可知P()==,
由对立事件的概率计算公式可得,
故这2名抗战老兵参加纪念活动的环节数不同的概率为.
(Ⅱ)根据题意可知随机变量ξ的可能取值为0,1,2,3,

P(ξ=1)==,
P(ξ=2)==,
P(ξ=4)=()3=,
0 1 2 3
则数学期望.
【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.。

相关文档
最新文档