芙蓉区三中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芙蓉区三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,
tan ∠PF 1F 2=,则此椭圆的离心率为( )
A .
B .
C .
D .
2. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;
②x 2+y 2
=3;
③+y 2=1;
④
﹣y 2
=1.
在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④
3. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任
意一点,则的取值范围为( )
A .
B .
C .
D .
4. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2
﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条
5. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
6. 已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,
}2- D .{}2
7.设m是实数,若函数f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f (x)的性质叙述正确的是()
A.只有减区间没有增区间 B.是f(x)的增区间
C.m=±1 D.最小值为﹣3
8.已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y+7=0相交于A,B两点,且•=4,则实数a 的值为()
A.或﹣B.或3 C.或5D.3或5
9.过点(2,﹣2)且与双曲线﹣y2=1有公共渐近线的双曲线方程是()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
10.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()
A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数 D.f(x)+1为偶函数
11.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
12.不等式≤0的解集是()
A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]
二、填空题
13.多面体的三视图如图所示,则该多面体体积为(单位cm).
14.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是 15.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
16.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= . 17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
18.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC
与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.
三、解答题
19.(本题满分15分)
如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .
(1)求证:BM AD ⊥;
(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为
3
π
时,求λ的值.
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
20.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直
线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.
21.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.
22.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)
在椭圆内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.
23.已知椭圆C :22
221x y a b
+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.
(1)求椭圆C 的方程;
(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别
交直线:4x =于M 、N 两点,求证:FM FN ⊥.
24.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对
问题的概率分别为
.
(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
芙蓉区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:∵
∴,即△PF1F2是P为直角顶点的直角三角形.
∵Rt△PF1F2中,,
∴=,设PF2=t,则PF1=2t
∴=2c,
又∵根据椭圆的定义,得2a=PF1+PF2=3t
∴此椭圆的离心率为e====
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
2.【答案】D
【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.
MN的中点坐标为(﹣,0),MN斜率为=
∴MN的垂直平分线为y=﹣2(x+),
∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.
②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,
③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,
④中的方程与y=﹣2(x+),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有
交点,
故选D
3.【答案】B
【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,
所以a2+1=4,即a2=3,所以双曲线方程为,
设点P(x0,y0),
则有,解得,
因为,,
所以=x0(x0+2)+=,
此二次函数对应的抛物线的对称轴为,
因为,
所以当时,取得最小值=,
故的取值范围是,
故选B.
【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.
4.【答案】C
【解析】
【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.
【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,
;;
∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.
∴两圆的圆心距=r2﹣r1;
∴两个圆外切,
∴它们只有1条内公切线,2条外公切线.
故选C.
5.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
6.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算
7.【答案】B
【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,
则f(0)=|m|﹣1=0,则m=1或m=﹣1,
当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,
当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,
作出函数f(x)的图象如图:
则函数在上为增函数,最小值为﹣2,
故正确的是B,
故选:B
【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.
8.【答案】C
【解析】解:圆x2
+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4
∴cos∠ACB=,
∴∠ACB=60°
∴圆心到直线的距离为,
∴=,
∴a=或5.
故选:C.
9.【答案】A
【解析】解:设所求双曲线方程为﹣y2=λ,
把(2,﹣2)代入方程﹣y2=λ,
解得λ=﹣2.由此可求得所求双曲线的方程为.
故选A.
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.
10.【答案】C
【解析】解:∵对任意x1,x2∈R有
f(x1+x2)=f(x1)+f(x2)+1,
∴令x1=x2=0,得f(0)=﹣1
∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,
∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],
∴f(x)+1为奇函数.
故选C
【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.
11.【答案】A
【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,
由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,
若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,
即前者可以推出后者,前者是后者的充分条件,
即后者可以推不出前者,
故选:A.
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
12.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x≤2,
故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
二、填空题
13.【答案】cm3.
【解析】解:如图所示,
由三视图可知:
该几何体为三棱锥P﹣ABC.
该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,
由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2
,
由几何体的正视图可得:AD+BD=AB=4cm ,
故几何体的体积V=×8×4=cm 3,
故答案为:
cm 3
【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.
14.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。
考点:函数图象的应用。
15.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.
故答案为:∃x0∈R,都有x03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
16.【答案】10.
【解析】解:由z=3﹣i,得
z•=.
故答案为:10.
【点评】本题考查公式,考查了复数模的求法,是基础题.
17.【答案】3.
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
18.【答案】
7
【解析】
三、解答题
19.【答案】(1)详见解析;(2)233λ=.
【解析】(1)由于2AB =,2AM BM ==,则AM BM ⊥,
又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分
又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分
20.【答案】
【解析】解:(Ⅰ)∵,∴a=c,
∴b2=c2
∴椭圆方程为+=1
又点A(1,)在椭圆上,
∴=1,
∴c2=2
∴a=2,b=,
∴椭圆方程为=1 …
(Ⅱ)设直线BD方程为y=x+b,D(x
,y1),B(x2,y2),
1
与椭圆方程联立,可得4x2
+2bx+b2﹣4=0
△=﹣8b2+64>0,∴﹣2<b<2
x1+x2=﹣b,x1x2=
∴|BD|==,
设d为点A到直线y=x+b的距离,∴d=
∴△ABD面积S=≤=
当且仅当b=±2时,△ABD的面积最大,最大值为…
(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k
==2﹣,k2==﹣2
1
此时k1+k2=0,猜想λ=1时成立.
证明如下:k
+k2=+=2+m=2﹣2=0
1
当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.
21.【答案】
【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得,则,
∴,得cosA=,
由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A <π,∴
sinA=
=, ∴△ABC 的面积
S=
=
=
.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
22.【答案】
【解析】解:∵直线x+ay ﹣2=0与圆x 2+y 2
=1有公共点
∴
≤1⇒a 2≥1,即a ≥1或a ≤﹣1,
命题p 为真命题时,a ≥1或a ≤﹣1; ∵点(a ,1
)在椭圆内部,
∴
,
命题q 为真命题时,﹣2<a <2,
由复合命题真值表知:若命题“p 且¬q ”是真命题,则命题p ,¬q 都是真命题 即p 真q
假,则
⇒a ≥2或a ≤﹣2. 故所求a 的取值范围为(﹣∞,﹣2]∪[2,+∞).
23.【答案】(1) 22
143
x y +=;(2)证明见解析. 【解析】
试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=
+,122
9
34
y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅得FM FN ⊥.
试题解析: (1)由题意得222221
91,41,2,a b c a a b c ⎧+=⎪⎪
⎪=⎨⎪
⎪=+⎪⎩
解得2,
a b =⎧⎪⎨=⎪⎩
∴椭圆C 的方程为22
143
x y +=.
又111x my =+,221x my =+, ∴112(4,
)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,222(3,)1
y FN my =-,
12122
121212
22499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++222
2236
3499906913434
m m m m m -+=+=-=---+++ ∴FM FN ⊥
考点:椭圆的性质;向量垂直的充要条件. 24.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列 【试题解析】(Ⅰ)的可能取值为
.
,
,
分布列为:
(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.
,
,
,
分布列为:
.
应先回答所得分的期望值较高.。