高中物理牛顿运动定律的应用试题(有答案和解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理牛顿运动定律的应用试题(有答案和解析)
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:
(1)物体与传送带间的动摩擦因数;
(2) 0~8 s内物体机械能的增加量;
(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J
【解析】
【详解】
(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:
可解得:μ=0.875.
(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移
0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为
(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:
0~6 s内物体位移为:
则0~6 s内物体相对于皮带的位移为
0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,
代入数据得:Q=126 J
故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J
【点睛】
对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:
(1)开始时B离小车右端的距离;
(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:
【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒
解得:,
A离左端距离,运动到左端历时,在A运动至左端前,木板静止
,,
解得
B离右端距离
(2)从开始到达共速历时,,,
解得
小车在前静止,在至之间以a向右加速:
小车向右走位移
接下来三个物体组成的系统以v共同匀速运动了
小车在6s内向右走的总距离:
【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.
3.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L1=2.5
m、L2=2 m.传送带始终保持以速度v匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m=2 kg,g取10 m/s2.求:
(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】
(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mg
m
μ=3 m/s 2
由于μ1mg>2μ2mg
故平板做匀加速运动,加速度大小:a 2=
122mg mg
m
μμ-⨯=1 m/s 2
设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)
L 2+x =vt -12
a 1t 2 对平板:v′=a 2t
x =
12
a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=
mg
m
μ=5 m/s 2
若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s
设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-1
2
a 1t′2 x′=
1
2
a 2t′2 联立以上各式代入数据解得:t′1=1
2
s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=
1
2
s 代入v″=v -a 1t′得:v″=3.5 m/s.
4.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P
与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37º=0.6,cos37º=0.8,求:
(1)包裹P 沿传送带下滑过程中的加速度大小和方向; (2)包裹P 到达B 时的速度大小;
(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处; (4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.
【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s
(4)22
2
200.4/80.4/c
a a m s v a m s ⎧<=⎨≥⎩()

) 如图所示:
【解析】 【分析】
先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。

【详解】
(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-=
代入数据得:2
10.4/a m s =-,方向:沿传送带向上;
(2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220
L=2v v a
-
代入数据得:1/v m s =;
(3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-=
得2
20.4/a m s =
当包裹P 的速度达到传送带的速度所用时间为:12250.4
v
t s s a =
== 速度从零增加到等于传送带速度时通过的位移有:2245220.4
v x m m a =
==⨯ 因为x<L ,所以包裹先加速再匀速,匀速运动时间:210
5
2.52
L x t s s v --=== 则P 从B 处到C 处总时间为:127.5t t t s =+=;
(4)若20.4/a m s <,则包裹相对传送带静止一起做匀加速运动,
加速位移等于传送带的长度,即:22C v aL = 即:2
20C v a =
若20.4/a m s ≥,则包裹在传送带上有相对滑动,包裹以a 2=0.4m/s 2向上匀加速运动,
有:222C v a L = 即22
8/?C v m s =(
) 两种情况结合有:222
200.4/80.4/c
a a m s v a m s ⎧<=⎨≥⎩()

) 图像如图所示:
【点睛】
解决本题的关键会根据物体的受力分析物体的运动规律,结合牛顿第二定律和运动学公式分析求解。

5.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.
(1)若木板固定,求小滑块在木板上滑过的距离.
(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.
【答案】(1)20
3.6m 2v x a
==(2)t=1s (3)121x x m +=
【解析】 【分析】 【详解】
试题分析:(1)2
25m /s a g μ==
20 3.6m 2v x a
==
(2)对m :2
125/a g m s μ==,
对M :221()Ma mg m M g μμ=-+,
221m /s a =
012v a t a t -=
t=1s
(3)木板共速前先做匀加速运动2
110.52
x at m == 速度121m /s v a t ==
以后木板与物块共同加速度a 3匀减速运动
231/a g m s μ==,
2231
0.52
x vt a t m =+=
X=121x x m +=
考点:牛顿定律的综合应用
6.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?
(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?
(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?
【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s
【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律
得: 1sin cos mg mg ma θμθ+=,解得2
110/a m s =
设小物块沿沿斜面上滑距离为x 1,则2
11020a x v -=-,解得15x m =
(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:
2sin cos mg mg ma θμθ-=,解得: 222/a m s =
设小物块下滑至斜面底端时的速度为v 1,则2
1212v a x =解得: 125/v m s =
设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =
设物块在传送带向左滑动的最大距离为L ,则2
3120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下
(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则2
22ax v =,
解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。

设小物体加速至与传送带共速用时t 1,则1v at =,解得11t s = 设小物体匀速运动用时t 2,则22L x vt -=,解得20.125t s =
设小物体由底端上滑到斜面最高点所时间t 3,则130v a t =-,解得30.4t s = 物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间123 1.525t t t t s =++=
7.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,2
10/g m s =,求:
(1)拉力撤去时,木板的速度v B ;
(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.
【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】
【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,
得:2
4/B a m s =
对木块有2A mg ma μ=,2
2/A a m s =
所以木块相对木板滑动
撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-
22122B mgt mgt mv mv μμ--=-,
可得20.2t s =,v=2.4m/s
在撤掉F 之前,二者的相对位移11122
B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222
B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=
(3)获得共同速度后,对木块,有2
2102
A mgx mv μ-=-, 对木板有()2211202
B mg mg x mv μμ-=- 二者的相对位移3A B x x x ∆=-
木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=
【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.
8.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)
(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;
(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ;
(4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D ;
(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;
(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】
(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D
mv mg R
=
可得:D /s v =
(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2C
mv F mg R
-=
代入数据可得:F =6.3N
由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N
(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2
y 2gh v = 得:v y =3m/s
小球沿切线进入圆弧轨道,则:3
5m/s 370.6
y B v v sin =
=
=︒
(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:
3750.84/A B v v cos m s =︒=⨯=
小球在水平面上做加速运动时:1F mg ma μ-=
可得:2
18/a m s =
小球做减速运动时:2mg ma μ=
可得:2
22/a m s =-
由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222
m m A v v v
x t t +=
⋅+⋅ 联立可得:0.6t s =
9.如图所示,在足够高的光滑水平台面上静置一质量为m 的长木板A ,木板A 右端用轻绳绕过光滑的轻质定滑轮与质量也为m 的物体C 连接.当C 从静止开始下落距离h 时,在木板A 的最右端轻放一质量为4m 的小铁块B (初速度为0,可视为质点),最终B 恰好未从A 上滑落,A 、B 间的动摩擦因数μ=0.25.最大静摩擦力等于滑动摩擦力,重力加速度为g .计算:
(1)C 由静止下落距离h 时,木板A 的速度大小v A ;
(2)木板A 的长度L ;
(3)若当铁块B 轻放在木板A 最右端的同时,对B 加一水平向右的恒力F =7mg ,其他条件不变,计算B 滑出A 时B 的速度大小v B .
【答案】(1gh (2)2h (35
2
gh 【解析】 【详解】
(1)对A 、C 分析,有
mg =2ma 1
212A v a h =
解得
A v gh =
(2)B 放在A 上后,设A 、C 仍一起加速,则
mg -4μmg =2ma 2
解得
a 2=0
即B 放在A 上后,A 、C 以速度v A 匀速运动.此时,B 匀加速运动,加速度
a B 1=
444
mg g
m μ= 设经过时间t 1,B 的速度达到v A ,且B 刚好运动至木板A 的左端 则有
v A =a B 1t 1
木板A 的长度
L =S AC -S B =v A t 1-
11
2
A v t 解得
L =2h
(3)加上力F 后,B 的速度达到v A 前,A 和C 仍匀速,B 仍加速,此时 B 的加速度
a B 2=
424F mg
g m
μ+= 加速时间
22A B gh v t a ==
B 相对A 的位移 22124
A B A A h S S S v t v t ∆=-=-= A 、B 共速后都向右加速,设经时间t 3,B 滑出A .有
对B 有
a B 3=
4342F mg g m μ-= 对A 有
a AC =
42mg mg g m
μ+= B 相对A 的位移 223333311()()22
B A A B A A
C S S S v t a t v t a t '∆==+-+'- 解得
3gh h t g =
= B 滑出A 时的速度 v B =v A +a B 3·t 3=
52gh
10.如图所示,光滑水平面上放有光滑直角斜面体,倾角θ=30°,质量M =2.5kg .平行于斜面的轻质弹簧上端固定,下端与质量m =1.5kg 的铁球相连,静止时弹簧的伸长量Δl 0=2cm.重力加速度g 取10m/s 2.现用向左的水平力F 拉着斜面体向左运动,铁球与斜面体保持相对静止,当铁球对斜面体的压力为0时,求:
(1)水平力F 的大小;
(2)弹簧的伸长量Δl .
【答案】(1)3(2)8cm
【解析】
【分析】
斜面M 、物体m 在水平推力作用下一起加速,由牛顿第二定律可求出它们的加速度,然后结合质量可算出物体m 的合力,最后利用物体的重力与合力可求出F 和弹簧的弹力.
【详解】
(1)当铁球与斜面体一起向左加速运动,对斜面体压力为0时,弹簧拉力为T ,铁球受力如
图:
由平衡条件、牛顿第二定律得:sin T mg θ=
cos T ma θ=
对铁球与斜面体整体,由牛顿第二定律得:F M m a =+() 联立以上两式并代入数据得:403F N =
(2)铁球静止时,弹簧拉力为T 0,铁球受力如图:
由平衡条件得: 0sin T mg θ=
由胡克定律得:00T k l =∆
T k l =∆
联立以上两式并代入数据得:8?cm l ∆=
【点睛】
从整体与隔离两角度对研究对象进行受力分析,同时掌握运用牛顿第二定律解题方法.。

相关文档
最新文档