江苏省灌南高级中学高中等比数列知识点和相关练习试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( )
A .2-
B .2-或1
C .1
D .2
2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8 B .8±
C .8-
D .1
3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
4.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q <<
B .61a >
C .121T >
D .131T >
5.已知{}n a 是正项等比数列且1a ,312
a ,22a 成等差数列,则
91078a a a a +=+( ) A
1
B
1
C
.3-
D
.3+6.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0 D .若S 2020>0,则a 2+a 4>0 7.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )
A .2±
B .2
C .3±
D .3
8.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =
B .72
3
S =
C .7623
S =
D .7127
3
S =
10.等比数列{}n a 的各项均为正数,且101010113a a =.则
313232020log log log a a a ++
+=( )
A .3
B .505
C .1010
D .2020
11.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
12.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32
B .16
C .8
D .4
13.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4
2
S S =( ) A .76
B .32
C .
2132
D .
14
14.已知1a ,2a ,3a ,4a 成等比数列,且()2
1234123a a a a a a a +++=++,若11a >,则( )
A .13a a <,24a a <
B .13a a >,24a a <
C .13a a <,24a a >
D .13a a >,24a a >
15.已知单调递增数列{}n a 的前n 项和n S 满足()(
)*
21n n n S a a n =+∈N
,且0n
S
>,记
数列{}
2n
n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )
A .7
B .8
C .10
D .11
16.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .
19
B .
17
C .
13
D .7
17.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6
D .3
18.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
19.数列{}n a 满足1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
20.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
二、多选题
21.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,
n T
且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )
A .101a <<
B
.11b <<
C .22n n S T <
D .22n n S T ≥
22.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A
B
C
D
23.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列
B .2n
n a =
C .数列{}2n
a 的前n 项和为2122
3
n +-
D .数列11n n b b +⎧
⎫
⎨
⎬⋅⎩⎭
的前n 项和为n T ,则
1n T <
24.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )
A .{}n a 为单调递增数列
B .
6
3
9S S = C .3S ,6S ,9S 成等
比数列
D .12n n S a a =-
25.已知数列{}n a 的前n 项和为n S ,1+1
4,()n n a S a n N *
==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩
⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( )
A .24a =
B .2n
n S =
C .38
n T ≥
D .12
n T <
26.已知数列是{}n a
是正项等比数列,且37
23
a a +=,则5a 的值可能是( ) A .2
B .4
C .85
D .
83
27.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正
确的是( )
A .数列{}2n a 是等比数列
B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .数列{}2log n a 是等差数列
D .数列{}n a 中,10S ,20S ,30S 仍成等比
数列
28.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )
A .1{
}n
a B .2
2log ()n a
C .1{}n n a a ++
D .12{}n n n a a a ++++
29.已知数列{}n a 的首项为4,且满足(
)*
12(1)0n n n a na n N ++-=∈,则( )
A .n a n ⎧⎫
⎨
⎬⎩⎭
为等差数列 B .{}n a 为递增数列
C .{}n a 的前n 项和1
(1)24n n S n +=-⋅+
D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
2
n n n T +=
30.将2n 个数排成n 行n 列的一个数阵,如下图:
111213212223231
32
3331312
n n n n n n n
n
a a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为
S .下列结论正确的有( )
A .3m =
B .7
67173a =⨯
C .1
(31)3
j ij a i -=-⨯
D .()1
(31)314
n S n n =
+- 31.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{
}21
n
a n +的前n 项和为,n S 则( ) A .12a =
B .2
21
n a n =
- C .21
n n
S n =
+ D .1n n S na +=
32.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{
}
22
1n n a a ++为等比数列
D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)
33.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( )
A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8
B .9
C .10
D .11
35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.A 【分析】
由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,
所以()2
13
1416
a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 2.A 【分析】
分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】
设等比数列{}n a 的公比为q ,则2
750a a q =>,
由等比中项的性质可得2
75964a a a ==,因此,78a =.
故选:A. 3.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 4.D 【分析】
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,
67(1)(1)0a a ∴--<,
11a >,若61a <,则一定有71a <,不符合
由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,
6121231267()1T a a a a a a =⋯=>,故C 正确,
13
1371T a =<,故D 错误,
∴满足1n T >的最大正整数n 的值为12.
故选:D . 5.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+1q =
(22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 6.A 【分析】
根据等比数列的求和公式及通项公式,可分析出答案. 【详解】
等比数列{}n a 的前n 项和为n S ,当1q ≠时,
202112021(1)01a q S q
-=>-,
因为2021
1q
-与1q -同号,
所以10a >,
所以2
131(1)0a a a q +=+>,
当1q =时,
2021120210S a =>,
所以10a >,
所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】
易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 7.D 【分析】
根据等比数列定义知3
813q =,解得答案.
【详解】
4个数成等比数列,则3
813q =,故3q =.
故选:D. 8.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,
故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 9.D 【分析】
利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】
n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,
∴21410(1)
11(1)51q a q q
a q q ⎧
⎪>⎪
⎪-⎪=⎨
-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,
771
(12)
1273123
S -∴==
-.
故选:D . 10.C 【分析】
利用等比数列的性质以及对数的运算即可求解. 【详解】
由120202201932018101010113a a a a a a a a =====,
所以313232020log log log a a a ++
+
()10103101010113log log 31010a a ===.
故选:C 11.A 【分析】
利用已知条件化简,转化求解即可. 【详解】
已知{}n a 为等比数列,132
2a a a ∴=,且22a =,
满足131233
2
1231322111124
a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:
(1)先利用等比数列的性质,得132
2a a a ∴=,
(2)通分化简3
12311124
S a a a ++==. 12.C 【分析】
根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,
所以1
2n n
a a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,
所以2
3
5328a a q ===. 故选:C 13.B 【分析】
由5312a a a +=,解得q ,然后由4142
422
12(1)111(1)11a q S q q q a q S q q
---===+---求解. 【详解】
在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得2
12
q =
所以4142
42212(1)1311(1)12
1a q S q q q a q S q q
---===+=---, 故选:B 【点睛】
本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 14.B 【分析】
由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】
设等比数列的公比为q , 则(
)()()23
2
123411
1+++1+1+0a a a a a q q q
a q q +++==≥,可得1q ≥-,
当1q =-时,12340a a a a +++=,()2
1230a a a ++≠,1q ∴>-,
()2
1234123a a a a a a a +++=++,即()
2
23
211+++1++q q q a q q
=,
()
23
12
21+++11++q q q a q q ∴=
>,整理得432++2+0q q q q <,显然0q <,
()1,0q ∴∈-,()20,1q ∈,
()213110a a a q ∴-=->,即13a a >,
()()32241110a a a q q a q q ∴-=-=-<,即24a a <.
故选:B. 【点睛】
关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 15.B 【分析】
由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1
122n n T n +=-⋅+,即可得解.
【详解】
由题意,()()*
21n n n S a a n N
=+∈,
当2n ≥时,()11121n n n S a a ---=+,
所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,
因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,
所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,
()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,
所以()()234111212222222212212
n n n n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,
所以()1
12
2n n T n +=-⋅+,
所以876221538T =⨯+=,9
87223586T =⨯+=,
所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】
关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 16.B 【分析】
根据等比中项的性质可求得4a 的值,再由2
174a a a =可求得7a 的值. 【详解】
在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,
由等比中项的性质可得2
4354a a a a ==,解得41a =, 17a =,2
1741a a a ==,因此,71
7
a =
. 故选:B. 17.D 【分析】
由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】
k a 是1a 与2k a 的等比中项
212k k a a a ∴=,()()2
111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦
()()2
23423k d d k d ∴+=⨯+,3k ∴=.
故选:D 【点睛】
本题考查等差数列与等比数列的基础知识,属于基础题. 18.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若24n n a =,则2n
n a =±,+1+12n n a =±,则
1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由
312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若
()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
210n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 19.C 【分析】
利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】
因为1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,
所以,410
4
9104561022222212
a a a -++
+=+
+==--,
49
8
4
4
8
941112152222222212
a a a -+++=+
+=+
+==--,
该数列从第5项到第15项的和为
10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=
故选:C 【点睛】
解题关键在于利用等比数列的求和公式进行求解,属于基础题 20.C 【分析】
根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出
5S 的结果.
【详解】
因为12234,12a a a a +=+=,所以23
12
3a a q a a +=
=+,所以1134a a +=,所以11a =, 所以()5515113121113
a q S q
--===--, 故选:C.
二、多选题
21.ABC 【分析】
利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】
因为数列{}n a 为递增数列, 所以123a a a <<,
所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,
所以2
1122b b b <=
,即1b < 又2
2234b b b <=,即21
2
2b b =
<, 所以11b >
,即11b <<,故B 正确;
{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++
= 22(121)
2[13(21)]22
n n n n +-++⋅⋅⋅+-=
=,
因为12n n n b b +⋅=,则1
122n n n b b +++⋅=,所以22n n b b +=,
则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+
=1101101122(222)(222)()(21)n n n
b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-
1)1)n n
>-=-,
当n =1
时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时
假设当n=k
时,21)2k k ->
21)k k ->, 则当n=k +1
1121)21)21)2k k k k k ++-=
+-=->
2221(1)k k k >++=+
所以对于任意*n N ∈
,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】
本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 22.AB 【分析】
因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】
解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2
111q
q q q -=-+,
因为1q ≠,所以21q q =+, 因为0q >
,所以解得12
q +=
, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3
21q q =+,
整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >
,所以解得12
q -+=,
综上q =
或q =, 故选:AB 23.BD 【分析】
根据22n n S a =-,利用数列通项与前n 项和的关系得1,1
,2
n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然
后再根据选项求解逐项验证. 【详解】
当1n =时,12a =,
当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,
所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n
n a =,2
4n
n a =,数列{}2n
a
的前n 项和为()14144414
3
n n n
S +--'=
=
-,
则22log log 2n
n n b a n ===,
所以()11111
11
n n b b n n n n +==-⋅⋅++,
所以 1111111
(11123411)
n T n n n =-+-++-=-<++, 故选:BD 【点睛】
方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()
11122
n n n a a n n S na d +-=
=+②等比数列的前n 项和公式()
11,1
1,11n
n na q S a q q q
=⎧⎪=-⎨≠⎪
-⎩;
(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.
(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 24.BD 【分析】
根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,
逐项判断选项可得答案. 【详解】
由638a a =,可得3338q a a =,则2q
,
当首项10a <时,可得{}n a 为单调递减数列,故A 错误;
由6
63
312912
S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,
显然3S ,6S ,9S 不成等比数列,故C 错误;
由{}n a 公比为q 的等比数列,可得11
122121
n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;
故选:BD . 【点睛】
关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求
和公式. 25.ACD 【分析】
在1+14,()n n a S a n N *
==∈中,令1n =,则A 易判断;由3
2122S a a =+=,B 易判断;
令12(1)n n n b n n a ++=
+,13
8
b =,
2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,裂项求和3182
n T ≤<,则CD 可判断. 【详解】
解:由1+14,()n n a S a n N *
==∈,所以2114a S a ===,故A 正确;
32212822S a a =+==≠,故B 错误;
+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,
1
2n n
a a +=, 所以2n ≥时,2422n n
n a -=⋅=,
令12(1)n n n b n n a ++=
+,12123
(11)8
b a +=
=+, 2n ≥时,()()11
12211
(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,
113
8
T b ==,2n ≥时,
()()2334
113111111111
8223232422122122
n n n n T n n n ++=+-+-+
+
-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,31
82
n T ≤<,故CD 正确;
故选:ACD. 【点睛】
方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n
n a n a S S n -=⎧
=⎨-≥⎩递推数列的通项,注
意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消
求和. 26.ABD 【分析】
根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】
解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,
∴2
373752323262a a a a a +
=, 因为50a >,
所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】
本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 27.AC 【分析】 由已知得12n n
a 可得以2122n n a -=,可判断A ;又1
111122n n n a --⎛⎫== ⎪⎝⎭
,可判断B ;由
122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.
【详解】
等比数列{}n a 中,满足11a =,2q
,所以12n n a ,所以2122n n a -=,所以数列
{}2n a 是等比数列,故A 正确;
又1
111122n n n a --⎛⎫
== ⎪⎝⎭
,所以数列1n a ⎧⎫
⎨
⎬⎩⎭
是递减数列,故B 不正确; 因为1
22log log 2
1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;
数列{}n a 中,101010111222
S -==--,202021S =-,30
3021S =-,10S ,20S ,30S 不成
等比数列,故D 不正确; 故选:AC . 【点睛】
本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 28.AD 【分析】
主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】
1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,
由等比数列的定义知1
{}n
a 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】
本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 29.BD 【分析】
由12(1)0n n n a na ++-=得
121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫
⎨⎬⎩⎭
是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于
1
1
1222
n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】
由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫
⎨⎬⎩⎭是以1141a a ==为首项,2为公比的
等比数列,故A 错误;因为11422n n n
a n
-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;
因为23
112222n n S n +=⨯+⨯+
+⋅,342212222n n S n +=⨯+⨯++⋅,所以 2
3
1
2
1222
2
n n n S n ++-=⨯++
+-⋅(
)222122
12
n
n n +-=
-⋅-,故
2(1)24n n S n +=-⨯+,
故C 错误;因为1
11
222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
(1)22n
n n n n T ++==, 故D 正确. 故选:BD 【点晴】
本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 30.ACD 【分析】
根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】
由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,
可得22
13112a a m m ==,6111525a a d m =+=+,所以22251m m =++,
解得3m =或1
2
m =-
(舍去),所以选项A 是正确的; 又由666
6761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;
又由1
111111(3[((1)][2(1)3]31)3j j j j ij i a m
a i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选
项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++
++++++++++
11121(13)(13)(13)131313
n n n n a a a ---=++
+
---1(231)(31)22n
n n +-=-⋅ 1
(31)(31)4
n n n =
+-,所以选项D 是正确的, 故选ACD. 【点睛】
本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 31.ABD 【分析】
由已知关系式可求1a 、n a ,进而求得{}21
n
a n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】
由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即2
21n a n =-,而122211
a =
=⨯-也成立, ∴2
21n a n =
-,*n N ∈,故数列{}21
n a n +通项公式为211(21)(21)2121n n n n =-+--+,
∴111111111121 (133557232121212121)
n n
S n n n n n n =-
+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD
【点睛】
关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21
n
a n +的通项公式,利用裂项法求前n 项和n S . 32.BCD 【分析】
举反例,反证,或按照等比数列的定义逐项判断即可. 【详解】
解:设{}n a 的公比为q ,
A. 设()1n
n a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.
B.
221
1
n n n n a a q a a +++=,所以{}1n n a a +为等比数列. C. ()(
)242222212222
11n n n n n n a q q a a q a a a q +++++==++,所以{}
221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列; 当1q ≠时,若{}n S 为等比数列,则()2
2
2
112n n n S S n S -+=≥,
即()
(
)()2
11
111
111111n n n a q a q a q q q q
-+⎛⎫⎛⎫⎛⎫---
⎪
⎪⎪= ⎪ ⎪⎪---⎝
⎭⎝
⎭⎝
⎭
,所以1q =,与1q ≠矛盾,
综上,{}n S 不是等比数列. 故选:BCD. 【点睛】
考查等比数列的辨析,基础题. 33.ABC 【分析】
由11a >,781a a >,
871
01
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】
11a >,781a a >,
871
01
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2
798
1a a a =<,故正确;
C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确.
故选:ABC .
【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.
34.AB
【分析】
由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案.
【详解】
由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,
n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,
其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)
=(21+22+…+2n )﹣n ()21212n
n -=-=-2n +1﹣2﹣n .
当n =9时,T n =1013<2019;
当n =10时,T n =2036>2019.
∴n 的取值可以是8,9.
故选:AB
【点睛】
本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
35.ACD
【分析】
根据新定义进行判断.
【详解】
A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=-
-+=-+, 虽然有1n n a a ->,但当1110n n a a -+
<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;
B .31n a n =-,则13131n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;
D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,1
1()(0,1)2n n a =-∈,∴10n n n
b a a =-<, 当n 为奇数时,11()2
n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。