玉门市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉门市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣
2. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )
A .150°
B .90°
C .60°
D .30°
3. 若复数z=2﹣i ( i 为虚数单位),则=( )
A .4+2i
B .20+10i
C .4﹣2i
D .
4. 已知向量
,
,其中
.则“
”是“
”成立的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 5. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)
6. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f (
)=( )
A .2或0
B .0
C .﹣2或0
D .﹣2或2
7. 直线的倾斜角是( )
A .
B .
C .
D .
8. 已知一个算法的程序框图如图所示,当输出的结果为
2
1
时,则输入的值为( )
A .2
B .1-
C .1-或2
D .1-或10
9. 已知抛物线2
4y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
10.若关于的不等式2
043
x a
x x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .1
2
- D .2-
11.已知x >1,则函数的最小值为( )
A .4
B .3
C .2
D .1
12.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
二、填空题
13.已知i 是虚数单位,复数的模为 .
14.设S n 是数列{a n }的前n 项和,且a 1=﹣1,
=S n .则数列{a n }的通项公式a n = .
15.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .
16.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
17.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣1)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是 .
18.定积分
sintcostdt= .
三、解答题
19.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2
y
y a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.
21.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.
22.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
23.(本小题满分12分)
∆的内角,,
ABC
a b c,(sin,5sin5sin)
A B C所对的边分别为,,
m B A C
=+,
n B C C A
=--垂直.
(5sin6sin,sin sin)
(1)求sin A的值;
∆的面积S的最大值.
(2)若a=ABC
24.(本小题满分12分)
在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.
(1)求cos C的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
玉门市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,
焦点坐标(,0),准线方程x=﹣,
由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,
即4﹣(﹣)=5,解之可得p=2
故抛物线的准线方程为x=﹣1.
故选:C.
【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.
2.【答案】D
【解析】解:∵,B=45°
根据正弦定理可知
∴sinA==
∴A=30°
故选D.
【点评】本题主要考查正弦定理的应用.属基础题.
3.【答案】A
【解析】解:∵z=2﹣i,
∴====,
∴=10•=4+2i,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
4.【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若,则或
所以“”是“”成立的充分而不必要条件。
故答案为:A 5. 【答案】A
【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1
得,f (1)=5,
则函数f (x )过定点(1,5). 故选A .
6. 【答案】D
【解析】解:由题意:函数f (x )=2sin (ωx+φ),
∵f (
+x )=f (﹣x ),
可知函数的对称轴为x=
=
,
根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f (
)=2或﹣2
故选D .
7. 【答案】A
【解析】解:设倾斜角为α,
∵直线的斜率为,
∴tan α=
,
∵0°<α<180°, ∴α=30° 故选A .
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
8. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111]
9.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
1
||||222
22
AF y
⋅=⨯⨯=,故选B.
10.【答案】D
【解析】
试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2
43
x a
x x
+
=
++
,解得3,1,
x x x a
=-=-=-,其对应的根分别为3,1,2
x x x
=-=-=,所以2
a=-,故选D.
考点:不等式与方程的关系.
11.【答案】B
【解析】解:∵x>1∴x﹣1>0
由基本不等式可得,
当且仅当即x﹣1=1时,x=2时取等号“=”
故选B
12.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,
AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0
,﹣,2),A(0
,﹣,0),B(1,0,0),C(0
,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
二、填空题
13.【答案】.
【解析】解:∵复数==i﹣1的模为=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.
14.【答案】.
【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,
∴S n+1﹣S n=S n+1S n,
∴=﹣1,=﹣1,
∴{}是首项为﹣1,公差为﹣1的等差数列,
∴=﹣1+(n﹣1)×(﹣1)=﹣n.
∴S n=﹣,
n=1时,a1=S1=﹣1,
n≥2时,a n=S n﹣S n﹣1=﹣+=.
∴a n=.
故答案为:.
15.【答案】0.3.
【解析】离散型随机变量的期望与方差.
【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500,
∵P(400<ξ<450)=0.3,
∴根据对称性,可得P(550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.16.【答案】BC
【解析】
【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,
B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离
d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,
A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;
B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;
C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;
D.如下图,M中的直线所能围成的正三角形有两类,
其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,
故本命题不正确.
故答案为:BC.
17.【答案】(﹣∞,﹣1)∪(0,1).
【解析】解:设g(x)=,则g(x)的导数为:
g′(x)=,
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)=为减函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数
又∵g(﹣1)==0,
∴函数g(x)的大致图象如图所示:
数形结合可得,不等式f(x)>0⇔x•g(x)>0
⇔或,
⇔0<x<1或x<﹣1.
∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).
故答案为:(﹣∞,﹣1)∪(0,1).
18.【答案】.
【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.
故答案为:
三、解答题
19.【答案】(1)1
(2)60°
【解析】(1)设BD=x,则CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴V A﹣BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)
设f(x)=(x3﹣6x2+9x) x∈(0,3),
∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数
∴当x=1时,函数f(x)取最大值
∴当BD=1时,三棱锥A﹣BCD的体积最大;
(2)以D为原点,建立如图直角坐标系D﹣xyz,
20.【答案】
【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
21.【答案】
【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,
cotθ=tanα=2,
∴sinθ=,
|AB|==40.
线段AB的长为40.
【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.
22.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
【考点】数列的求和;等比数列的通项公式.
【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.
【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;
(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,
则3(1++)=9,
解得,q=1或q=﹣;
故a n=3,或a n=3•(﹣)n﹣3;
(Ⅱ)证明:若a n=3,则b n=0,与题意不符;
故a2n+3=3•(﹣)2n=3•()2n,
故b n=log2=2n,
故c n==﹣,
故c1+c2+c3+…+c n=1﹣+﹣+…+﹣
=1﹣<1.
【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.
23.【答案】(1)
45
;(2)4. 【解析】 试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.
试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直,
∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,
考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 24.【答案】
【解析
】。