河北省隆化存瑞中学2018-2019学年上学期高三期中数学模拟题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省隆化存瑞中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -= C .(1)
2
n n n a += D .21n a n =+ 2. 函数
的定义域为( )
A
B
C D
3. 椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
4. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( ) A .{|2}a a ≤ B .{|1}a a ≤ C .{|1}a a ≥ D .{|2}a a ≥ 5. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
6. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-,
且0m n ?,则
216
3
n n S a ++的最小值为( )
A .4
B .3 C
.2 D .
92
【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.
7. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )
A .10
B .11
C .12
D .13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.
8. 设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为1
||2OF ,则双曲线的离心率为( )
A
. B
.3
C
. D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 9. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当
14
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 10.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
11.已知函数(5)2()e
22()2x
f x x f x a x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
,若(2016)e f -=,则a =( ) A .2 B .1 C .-1 D .-2 【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 12.复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 14.将曲线1:C 2sin(),04
y x π
ωω=+>向右平移
6
π
个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.
15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为2
2212
3cos 4sin ρθθ
=
+,点12,F F 为其左、右焦点,直线的参数方程为
2x y ⎧=+⎪⎪⎨
⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;
(2)求点12,F F 到直线的距离之和.
18.(本小题满分12分)
如图长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面
相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由); (2)求平面α将长方体分成的两部分体积之比.
19.(本小题满分12分) 已知椭圆C
A 、
B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆
C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;
(2)若过左焦点1F 的直线交椭圆
C 于M N 、两点,求22F M F N 的取值范围.
20.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.
21.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[] C[]
D[
]
22.(本小题满分12分)已知函数1
()ln (42)()f x m x m x m x
=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的
取值范围.
【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.
河北省隆化存瑞中学2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 2. 【答案】C
【解析】要使函数有意义,则x 2﹣x >0,即x >1或x <0, 故函数的定义域为(﹣∞,0)∪(1,+∞) 3. 【答案】B
4. 【答案】D 【解析】
试题分析:∵A B ⊆,∴2a ≥.故选D . 考点:集合的包含关系. 5. 【答案】B 【解析】由题意,可取,所以
6. 【答案】A




7. 【答案】C
【解析】由题意,得甲组中78888486929095
887
m +++++++=,解得3m =.乙组中888992<<,
所以9n =,所以12m n +=,故选C .
8. 【答案】B 【



9. 【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B
M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()
1
,CN 2
CM xCA yCB CA CB =+=
+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 10.【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选 C. 11.【答案】B
【解析】因为(2016)(2016)(54031)(1)f f f f ae e -==⨯+===,所以1a =,故选B . 12.【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-21-i =-2(1+i )2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩⎪⎨⎪⎧2+2a =a -b
2b =a +b
, ∴a =b =-1,故z =-1-i.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】:2x ﹣y ﹣1=0
解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,
∴弦MN 所在直线的斜率为2,
则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 14.【答案】6
【解析】解析: 曲线2C 的解析式为2sin[()]2sin()6446
y x x ππππ
ωωω=-
+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡
⎤++-+=⎢⎥⎣
⎦对一切
x R ∈恒成立,∴1cos()06
sin()0
6πωπω⎧
+=⎪⎪⎨⎪=⎪⎩
∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.
15.【答案】
【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA==

圆的半径为r=

∴sin θ==,
∴cos θ=,tan θ==,
∴tan2θ===,
故答案为:。

16.【答案】[2,2]
(02x #,02y #)上的点(,)x y 到定点(2,2)22,故MN 的取值
范围为[2,2].
22y x N M
D
C
B 三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22
143
x y +=;(2)22. 【解析】
试题分析:(1)由公式cos sin x y
ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;
考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.
18.【答案】
【解析】解:
(1)交线围成的四边形EFCG (如图所示).
(2)∵平面A 1B 1C 1D 1∥平面ABCD ,
平面A 1B 1C 1D 1∩α=EF ,
平面ABCD ∩α=GC ,
∴EF ∥GC ,同理EG ∥FC .
∴四边形EFCG 为平行四边形,
过E 作EM ⊥D 1F ,垂足为M ,
∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4.
∴GC =EF =
EM 2+MF 2=102+42=116, ∴GB =GC 2-BC 2=116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1­GBC 两部分组成.
其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1­GBC
=S △FC 1C ·B 1C 1+S △GBC ·BB 1
=12×8×8×10+12×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800.
∴V 1V 2=800480=53
, ∴其体积比为53(35
也可以). 19.【答案】(1)22
142
x y +=;(2)22[2,7)F M F N ∈-. 【解析】

题解析:(1)根据题意知2c
a =,即221
2c a =, ∴22
212a b a -=,则222a b =,
设(,)P x y ,
∵(,)(,)PA PB a x y a x y =-----,
2
2
2222222
1()222a x x a y x a x a =-+=-+-=-,
∵a x a -≤≤,∴当0x =时,2
min ()22a PA PB =-=-,
∴24a =,则22b =.
∴椭圆C 的方程为2
2
142x y +=.
11
11]
设11(,)M x y ,22(,)N x y ,则2
122
12x x k +=-+,21224(1)12k x x k -=+,
∵211(2,)F M x y =-,222()F N x y =,
∴222121212)2(F M F N x x x x k x x =+++
2221212(1))22k x x x x k =+++++
22
2
22224(1)42(1)2(1)221212k k k k k k k
--=++-++++ 2
9712k =-+. ∵2121k +≥,∴210112k
<≤+. ∴2
97[2,7)12k -∈-+. 综上知,22[2,7)F M F N ∈-. 考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.
【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.
20.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
21.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

∴当x>0时,。

∵函数f(x)为奇函数,
∴当x<0时,。

∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。

故实数a的取值范围是。

请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.。

相关文档
最新文档