鹿角镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鹿角镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列方程组是二元一次方程组的是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:A、是二元二次方程组,故A不符合题意;
B、是分式方程组,故B不符合题意;
C、是二元二次方程组,故C不符合题意;
D、是二元一次方程组,故D符合题意;
故答案为:D.
【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
2、(2分)若不等式组有三个非负整数解,则m的取值范围是()
A.3<m<4
B.2<m<3
C.3<m≤4
D.2<m≤3
【答案】D
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组,可得,,即-3≤x<m,该不等式组有三个非负整数解,分析可知,这三个非负整数为0、1、2,由此可知2≤m<3.
【分析】首先确定不等式组非负整数解,然后根据不等式的非负整数解得到一个关于m的不等式组,从而求解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
3、(2分)利用数轴确定不等式组的解集,正确的是()
A.
B.
C.
D.
【答案】A
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集
的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.
故答案为:A.
【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、(2分)已知两数之和是25,两数之差是3,则这两个数分别为()
A. 12,10
B. 12,9
C. 15,10
D. 14,11
【答案】D
【考点】解二元一次方程组,二元一次方程组的应用-数字问题
【解析】【解答】解:设两个数分别为x、y,根据题意得:
,
解得:,
故这两个数分别为14、11.
故答案为:D.
【分析】抓住题中关键的已知条件,将其转化为等量关系是:两数之和=25;两数之差=3,设未知数,建立方程组,利用加减消元法求出方程组的解即可。
5、(2分)若2m-4与3m-1是同一个正数的平方根,则m为()
A. -3
B. 1
C. -1
D. -3或1
【答案】D
【考点】平方根
【解析】【解答】解:由题意得:2m-4=3m-1或2m-4=-(3m-1)
解之:m=-3或m=1
故答案为:D
【分析】根据正数的平方根由两个,它们互为相反数,建立关于x的方程求解即可。
6、(2分)是二元一次方程的一个解,则a的值为()
A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。
7、(2分)有下列说法:
①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,
,这4个;④是分数,它是有理数.其中正确的个数是()
A.1
B.2
C.3
D.4
【答案】A
【考点】实数及其分类,无理数的认识
【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;
②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;
③在1和3之间的无理数有无数个,故说法③错误;
④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,
∴不是分数,是无理数,故说法④错误;
故答案为:A.
【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
8、(2分)已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()
A. ﹣,
B. ,﹣
C. ,
D. ﹣,﹣
【答案】A
【考点】解二元一次方程组,偶次幂的非负性,绝对值的非负性
【解析】【解答】解:∵|x+y|+(x﹣y+5)2=0,
∴x+y=0,x﹣y+5=0,
即,
①+②得:2x=﹣5,
解得:x=﹣,
把x=﹣代入①得:y= ,
即方程组的解为,
故答案为:A.
【分析】根据非负数之和为0,则每一个数都为0,得出x+y=0,x﹣y+5=0,再解二元一次方程组求解,即可得出答案。
9、(2分)若是方程组的解,则a、b值为()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解
【解析】【解答】解:把代入得,
,
.
故答案为:A.
【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程
组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
10、(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:二元一次方程x-2y=1 ,
当时,,故A. 是方程x-2y=1 的解;
当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;
当x=-1 时,y=-1 ,故 D. 是方程x-2y=1 的解,
故答案为:B
【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
11、(2分)下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
A.
B.
C.
D.
【答案】B
【考点】平行线的判定
【解析】【解答】解:A、图形中的∠1与∠2是对顶角,不能判断AB∥CD,故A不符合题意;
B、∠2的对顶角和∠1是同位角,根据同位角相等,两直线平行,因此AB∥CD,故B符合题意;
C、∠1=∠2,没有已知这两角是90°,不能判断AB∥CD,故C不符合题意;
D、∵∠1=∠2
∴AD∥BC,不能判断AB∥CD,故D不符合题意;
故答案为:B
【分析】对顶角相等不能判断两直线平行,可对A作出判断;同位角相等两直线平行,可对B作出判断;同旁内角相等,两直线不一定平行,可对C作出判断;而D中的∠1=∠2,不能判断AB∥CD,即可得出答案。
12、(2分)下列方程组中,属于二元一次方程组的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;
B. 第一个方程不是整式方程,故不是二元一次方程组;
C. 符合二元一次方程组的定义,是二元一次方程组;
D.含有三个未知数,故不是二元一次方程组。
故答案为:C
【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。
二、填空题
13、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
14、(1分)若= =1,将原方程组化为的形式为________.【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。
15、(3分)的平方根是________,的算术平方根是________,-216的立方根是________. 【答案】±
;
;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。
16、(1分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.
【答案】10
【考点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
17、(1分)按如下程序进行运算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是________.
【答案】4
【考点】解一元一次不等式组
【解析】【解答】解:根据题意得:第一次:2x﹣1,
第二次:2(2x﹣1)﹣1=4x﹣3,
第三次:2(4x﹣3)﹣1=8x﹣7,
第四次:2(8x﹣7)﹣1=16x﹣15,
根据题意得:
解得:5<x≤9.
则x的整数值是:6,7,8,9.
共有4个.
故答案是:4.
【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定x的整数值,从而求解.
18、(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).
【答案】是
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵把代入:得:
方程①左边=5+10+(-15)=0=右边;
方程②左边=2×5-10+(-15)=-15=右边;
方程③左边=5+2×10-(-15)=40=右边;
∴是方程组:的解.
【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。
三、解答题
19、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
20、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
21、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
22、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。
23、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
24、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。
25、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,
- ,
,…);
无理数集合:(
,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
26、(5分)把下列各数填在相应的大括号里:
,
,-0.101001,
,
― ,0.202002…,
,0,
负整数集合:(…);负分数集合:(…);无理数集合:(…);
【答案】解:
= -4,
= -2,
= ,所以,负整数集合:(
,
,…);
负分数集合:(-0.101001,
― ,
,…);无理数集合:(0.202002…,
,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。
实数包括有理数和无理数。
有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。
第21 页,共21 页。