监利县高中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
监利县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A .
B .(4+π)
C .
D .
2. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
3. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x
4. 已知函数22
()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1
和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
5. 已知a 为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
6. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}
7. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )
A .2
B .3
C .7
D .9
8. 直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心 9. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2
倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( ) A .x=π B
.
C
.
D
.
10.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O
是坐标原点,且,那么实数a 的取值范围是( ) A
.
B
.
C .
D
.
11.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( ) A
.
B .6
C
.
D .3
12.设i
是虚数单位,是复数z 的共轭复数,若
z =2
(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
二、填空题
13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .
14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )
﹣a )﹣1有三个零点,则a 的取值范围是_____.
15.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
16.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .
17.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 . 18.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .
三、解答题
19.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;
(2)比较f (2)与f (b 2
+2)的大小;
(3)求函数f (x )=a (x ≥0)的值域.
20.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :.
(1)求圆O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.
21.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x
x i1234 5
y i5753403010
(1
(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,
(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,
对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为
(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)
22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图. (Ⅰ)求图中实数a 的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
23.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
24.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,
,x2,x3的值,并写出函数f(x)的解析式;
1
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上
的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
监利县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:由三视图知,几何体是一个组合体,
是由半个圆锥和一个四棱锥组合成的几何体,
圆柱的底面直径和母线长都是2,
四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=,
∴几何体的体积是=,
故选D.
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
2.【答案】B
【解析】解:方程(x2﹣4)2+(y2﹣4)2=0
则x2﹣4=0并且y2﹣4=0,
即,
解得:,,,,
得到4个点.
故选:B.
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
3.【答案】D
【解析】
考点:直线方程
4.【答案】C
【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()10
10
f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 5. 【答案】C
【解析】解:由积分运算法则,得
=lnx
=lne ﹣ln1=1
因此,不等式即
即a >1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a >e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
6. 【答案】D
【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x
<},
故可得f (10x )>0等价于﹣1<10x
<, 由指数函数的值域为(0,+∞)一定有10x
>﹣1,
而10x
<可化为10x
<
,即10x
<10﹣lg2
,
由指数函数的单调性可知:x <﹣lg2 故选:D
7. 【答案】C
【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在
x=处取最小值﹣2,
∴
sin
+acos
=
﹣
=﹣2,∴
a=
,∴f (x )=sin ω
x+
cos ωx=2sin (ω
x+
).
再根据f
()=2sin (
+
)=﹣2
,可得
+
=2k π
+
,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,
则ω的可能值为7,
故选:C.
【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.
8.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化
【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2.
圆心到直线的距离为:,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D
9.【答案】B
【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x)=kπ,得x=2kπ,
即+2kπ,k∈Z,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
10.【答案】A
【解析】解:设AB的中点为C,则
因为,
所以|OC|≥|AC|,
因为|OC|=,|AC|2=1﹣|OC|2,
所以2()2≥1,
所以a≤﹣1或a≥1,
因为<1,所以﹣<a<,
所以实数a的取值范围是,
故选:A.
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.11.【答案】D
【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.
故选:D.
12.【答案】B
【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,
由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],
整理得a2+b2=2a+2(b﹣1)i.
则,解得.
所以z=1+i.
故选B.
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
二、填空题
13.【答案】cm3.
【解析】解:如图所示,
由三视图可知:
该几何体为三棱锥P﹣ABC.
该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,
由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2
,
由几何体的正视图可得:AD+BD=AB=4cm ,
故几何体的体积V=×8×4=cm 3,
故答案为:
cm 3
【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.
14.【答案】11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 15.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即
)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.
16.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦
【解析】
试题分析:因为12()()0f x f x +≤,故得不等式()()
()3322
12121210x x a x x a x x ++++++≤,即
()()
()()()2
2
1212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦
,由于
()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故
()12122133x x a a x x ⎧
+=-+⎪⎪⎨
⎪=⎪⎩
,代入前面不等式,并化简得()1a +()2
2520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤
-∞-⎢⎥⎣⎦
.
考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.
【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实
数的取值范围.111]
17.【答案】 2:1
.
【解析】解:设圆锥、圆柱的母线为l ,底面半径为r , 所以圆锥的侧面积为: =πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1 故答案为:2:1
18
.【答案】 ①③④ .
【解析】解:①∵
,∴T=2π,故①正确;
②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x
2﹣4x ﹣5=0”成立
的充分不必要条件,故②错误; ③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;
④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.
综上,正确的命题为①③④. 故答案为①③④.
三、解答题
19.【答案】
【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),
∴a2=,
∴a=
(2)∵f(x)=()x在R上单调递减,
又2<b2+2,
∴f(2)≥f(b2+2),
(3)∵x≥0,x2﹣2x≥﹣1,
∴≤()﹣1=3
∴0<f(x)≤(0,3]
20.【答案】
【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,
故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.
直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.
(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),
故直线l 与圆O 公共点的一个极坐标为.
【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.
21.【答案】
【解析】解:(1)
根据散点图可知,x与y是负相关.
(2)根据提供的数据,先求数据(ω1,y1),(ω2,y2),(ω3,y3),(ω4,y4),(ω5,y5)的回归直线方程,y=cω+d,
=-811
374
≈-2.17,
a
^=y-c^ω=38-(-2.17)×11=61.87.
∴数据(ωi,y i)(i=1,2,3,4,5)的回归直线方程为y=-2.17ω+61.87,又ωi=x2i,
∴y关于x的回归方程为y=-2.17x2+61.87.
(3)当y=0时,x=61.87
2.17=6187
217
≈5.3.估计最多用5.3千克水.
22.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得:
10×(0.005+0.01+0.025+a+0.01)=1,
解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,
数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,
若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,
则所有的基本事件有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),
(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,
则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.
23.【答案】
【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
24.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,
∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.。