高三数学下学期导数及其应用多选题单元达标测试综合卷学能测试试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学下学期导数及其应用多选题单元达标测试综合卷学能测试
试题
一、导数及其应用多选题
1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都
有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()3
2
1f x x x =-+
B .()21x
f x e x =--
C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨
>⎩
D .4()sin f x x x =
【答案】BC 【分析】
运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】
解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;
0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0
()0x f x <⎧⎨'<⎩
;
当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,
即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()3
2
1f x x x =-+,()2
132f x x x '=-+,则当0x ≠时,由
()()321232230x x x x f x x =-+=-≤',得2
3
x ≥
,不符合条件②,故1()f x 不是“偏对称函数”;
B 中,()21x
f x e x =--,()21x
f x e '=-,当0x >时,e 1x >,()20f x '>,当0
x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21x
f x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,
由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,
令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,
∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”;
C 中,由函数()3ln 1,0()2,
x x f x x x ⎧-+≤=⎨
>⎩,当0x <时,31
()01
f x x =
<-',当0x >时,3()20f x '=>,符合条件②,
∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1
()201
F x x '=
-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,
∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;
D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数, 而4()sin cos f x x x x '=+
()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】
本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.
2.已知函数()1
ln f x x x x
=-+
,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点
C .当1k <时,函数()g x 与()h x kx =的图象有两个交点
D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】
根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()12
1()f x f x =,结合单调性,可判定D 正确. 【详解】
由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()211
0g x x x
''=--<,
所以()g x '在(0,)+∞上为单调递减函数,又由 ()()1
10,12ln 202
g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1
ln f x x x x
=-+
, 当0x >时,()1ln f x x x x
=-+,可得 ()22
1
x x f x x -+-'=, 因为2
2131()024
x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;
又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()22
1
x x f x x -+-'=,
因为2
2
13
1()02
4
x x x -+-=---
<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1
ln f x x x x
=-+
在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-
,则 ()211
0x x x
ϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,
结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;
由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,
可得()()1222222221111
1ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即
()121
(
)f x f x =,因为()f x 在(0,)+∞单调递减,所以 12
1x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确.
故选:ACD.
【点睛】
函数由零点求参数的取值范围的常用方法与策略:
1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;
2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.
3.已知函数()3
2
f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).
A .函数()f x 一定存在极大值和极小值
B .若函数()f x 在1()x -∞,、2()x ,
+∞上是增函数,则2123x x -≥ C .函数()f x 的图像是中心对称图形
D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】
首先求函数的导数2
()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333
a a a
f x f x f -
++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.
【详解】
A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,
令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,
∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,
+∞上单调递增,
∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223a
x x +=-
,1213
x x ⋅=-,易知12x x <,
∴213
x x -==≥
,B
对, C 选项,易知两极值点的中点坐标为(())33
a a f --,,又
23()(1)()333
a a a f x x x f -+=-+++-,
∴()()2()333
a a a
f x f x f -
++--=-, ∴函数()f x 的图像关于点(())3
3
a
a f --,成中心对称,C 对,
D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,
处切线方程为y x =-, 且3
y x
y x x =-⎧⎨=-⎩
有唯一实数解, 即()f x 在(0)0,
处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】
方法点睛:解决函数极值、最值综合问题的策略:
1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;
2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;
3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.
4.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>
【答案】ABC 【分析】
求导2
()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】
3()f x x ax b =++,求导得2()3f x x a '=+
当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;
当0a <时,令()0f x '=,即230x a +=,解得13a
x -=-,23
a x -= 当x 变化时,()'f x ,()f x 的变化情况如下表:
x
,3a ⎛⎫--∞- ⎪ ⎪⎝⎭
3
a
-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭
3
a
- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭
()'f x
+
-
+
()f x
极大值 极小值
故当3
a
x -=-
,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭
, 当3
a x -=,函数()f x 取得极小值
2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭
又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图
或
则需0303a f a f ⎧
⎛--<⎪ ⎪⎝⎨
-⎪<⎪⎩,即203320
33a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a a
b -<<,
B 选项,3,3a b =-=-,满足上式,故B 符合题意;
则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨
-⎪>⎪⎩
,即203320
33a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a a
b ->>,
D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】
思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.
5.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得
()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中
正确的是( )
A .函数()2g x =-是函数ln ,0
()1,0x x f x x >⎧=⎨
⎩
的一个承托函数 B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数
C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]e
D .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】
由承托函数的定义依次判断即可. 【详解】
解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;
对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()x
h x e ax =-,则()x
h x e a '
=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,
∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,
若0a <,当x →-∞时,()h x →-∞,故不成立,
综上,当0a e 时,函数()g x ax =是函数()x
f x e =的一个承托函数,故C 正确;
对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC .
【点睛】
方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.
6.已知函数()1
ln f x x x x
=-+
,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点
C .()f x 既有最大值,又有最小值
D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】
本题首先可根据()10f -=以及1
3f
判断出A 错误,然后根据当0x >时的函数单
调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()12
1
f x f x ⎛⎫
=
⎪⎝⎭
,根据函数单调性即可证得121=x x ,D 正确. 【详解】
函数()1
ln f x x x x
=-+
的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x
=-+,()222111
1x x f x x x x -+-'=--=;
当0x <时,1ln f x x x x
,()222
111
1x x f x x x x -+-'=--=, A 项:1ln 1110f
,2
2
1
11
1
31
f
,
则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;
B 项:当0x >时,
2
22
2
151
24
x x x f x
x x ,函数()f x 是减函数,
当0x <时,
2
22
2
15124
x x x f x
x x ,函数()f x 是减函数,
因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误;
D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1
222
2
2
22
2
1111
ln ln
f x f x x x x f
x x x x , 因为()f x 在()0,∞+上为减函数,所以12
1
x x =
,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】
本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.
7.已知函数()()2
2
14sin 2
x
x
e
x f x e -=
+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫
-
⎪⎝⎭
上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥
【答案】AD 【分析】
由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,
()()
2
22
11
4sin =2cos 2x x x
x e x e f x x e e
-+=
+-,
定义域为R ,关于原点对称,
()2211
=2cos()2cos()()x x x x
e e
f x x x f x e e --++---=-=,
()y f x ∴=是偶函数,其图像关于y 轴对称,
()f x ∴在(),-∞+∞上不单调,故A 正确;
对B ,1
()2sin x
x
f x e x e '=-
+, 11()2sin()=(2sin )()x x
x x
f x e x e x f x e e --''-=-
+---+=-,
()f x '∴是奇函数,
令1
()2sin x
x g x e x e
=-+, 则1
()+
2cos 2+2cos 0x x g x e x x e
'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;
对C ,1()2sin x x f x e x e
'=-
+,且()'
f x 在(),-∞+∞上单调递增, 又
(0)0f '=,
π,02x ⎛⎫
∴∈- ⎪⎝⎭
时,()0f x '<,
()y f x ∴=在π,02⎛⎫
- ⎪⎝⎭
上单调递减,故C 错误;
对D ,
()y f x =是偶函数,且在(0,)+∞上单调递增,
()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.
故选:AD. 【点睛】
用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;
(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.
8.对于函数2ln ()x
f x x
=,下列说法正确的是( )
A .()f x 在x =12e
B .()f x 有两个不同的零点
C .f
f
f <<
D .若()21
f x k x
<-
在()0,∞+上恒成立,则2
e k >
【答案】ACD 【分析】
求得函数的导数3
12ln ()-'=
x
f x x ,根据导数的符号,求得函数的单调区间和极值,可判
定A 正确;根据函数的单调性和()10f =,且x >
()0f x >,可判定B 不正确;
由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判
定C 正确;分离参数得到()22
1ln 1x k f x x x +>+
=在()0,∞+上恒成立,令()2
ln 1
x g x x
+=
,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】
由题意,函数2
ln ()x f x x
=,可得312ln ()(0)x
f x x x -'=>,
令()0f x '=,即3
12ln 0x
x
-=,解得x =
当0x <<()0f x '>,函数()f x 在上单调递增;
当x >
()0f x '<,函数()f x 在)+∞上单调递减,
所以当x =
()f x 取得极大值,极大值为1
2f e
=
,所以A 正确; 由当1x =时,()10f =,
因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,
当x >
()0f x >,所以函数在)+∞上没有零点,
综上可得函数在(0,)+∞只有一个零点,所以B 不正确;
由函数()f x 在)+∞上单调递减,可得f f >,
由于ln 2ln ,42f f π
π
=
===
,
则2ln ln 2ln ln 22444f f π
πππππ
-=-=-
,
因为22ππ>,所以0f f ->,即f f >,
所以f
f f <<,所以C 正确;
由()2
1f x k x
<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()
3
2ln 1
x g x x --'=, 令()0g x '=,即
3
2ln 1
0x x --=,解得x =
所以当0x
<<()0g x '>,函数()g x 在上单调递增; 当x
>
()0g x '<,函数()g x 在)+∞上单调递减, 所以当x
=
()g x 取得最大值,最大值为22e e
g e =-=,
所以2
e
k >
,所以D 正确. 故选:ACD. 【点睛】
本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.
9.已知()2
sin x f x x x π
=-
-.( )
A .()f x 的零点个数为4
B .()f x 的极值点个数为3
C .x 轴为曲线()y f x =的切线
D .若()12()f x f x =,则12x x π+=
【答案】BC 【分析】
首先根据()0f x '=得到21cos x
x π
-
=,分别画出21x
y π
=-
和cos y x =的图像,从而得
到函数的单调性和极值,再依次判断选项即可得到答案. 【详解】
()21cos x
f x x π
'=-
-,令()0f x '=,得到21cos x
x π
-=.
分别画出21x
y π
=-
和cos y x =的图像,如图所示:
由图知:21cos x
x π
-
=有三个解,即()0f x '=有三个解,分别为0,
2
π,π. 所以(),0x ∈-∞,()21cos 0x
f x x π
'=-
->,()f x 为增函数,
0,2x π⎛⎫
∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数,
,2x ππ⎛⎫
∈ ⎪⎝⎭
,()21cos 0x f x x π'=-->,()f x 为增函数,
(),x π∈+∞,()21cos 0x
f x x π
'=-
-<,()f x 为减函数.
所以当0x =时,()f x 取得极大值为0,当2
x π=时,()f x 取得极小值为
14
π
-,
当x π=时,()f x 取得极大值为0,
所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.
因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确. 因为()f x 在(),0-∞为增函数,0,2π⎛⎫
⎪⎝
⎭
为减函数, 所以存在1x ,2x 满足1202
x x π
<<<,且()()12f x f x =,
显然122
x x π
+<,故D 错误.
故选:BC 【点睛】
本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.
10.已知函数()2
1,0
log ,0kx x f x x x +≤⎧=⎨
>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点
【答案】CD 【分析】
令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】
令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,
①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,
∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,
由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.
②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,
由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点.
故选:CD.
【点睛】
本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。