甘肃省天水市2019-2020学年中考最新终极猜押数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省天水市2019-2020学年中考最新终极猜押数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A .4.25分钟
B .4.00分钟
C .3.75分钟
D .3.50分钟
2.已知一元二次方程x 2-8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )
A .13
B .11或13
C .11
D .12
3.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h ;④慢车速度为46km/h ; ⑤A 、B 两地相距828km ;⑥快车从A 地出发到B 地用了14小时
A .2个
B .3个
C .4个
D .5个
4.如图,在ABC V 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )
A .2
B .3
C .4
D .6
5.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在
x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )
A .32)
B .(4,1)
C .(43
D .(4,236.下列各式中,计算正确的是 ( )
A 235=
B .236a a a ⋅=
C .32a a a ÷=
D .()2222a b a b =
7.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )
A .10000x ﹣10=147000(140)0
x + B .10000x +10=147000(140)0x + C .100000(140)0
x -﹣10=14700x D .100000(140)0
x -+10=14700x 8.下列说法正确的是( ) A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,
则甲的射击成绩较稳定
C .“明天降雨的概率为12
”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式
9.若分式方程
1x a a x -=+无解,则a 的值为( ) A .0 B .-1 C .0或-1 D .1或-1
10.下列判断正确的是( )
A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C .“篮球队员在罚球线上投篮一次,投中”为随机事件
D .“a 是实数,|a|≥0”是不可能事件
11.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x
轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()
A.
1
2
a
-B.
1
(1)
2
a
-+C.
1
(1)
2
a
--D.
1
(3)
2
a
-+
12.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()
A.3
2
cm B.3cm C.23cm D.9cm
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
14.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.
15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
16.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
17.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.
18.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问
李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
20.(6分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.
B
(1)当点E在BC边上时,画出图形并求出∠BAD的度数;
(2)当△CDE为等腰三角形时,求∠BAD的度数;
(3)在点D的运动过程中,求CE的最小值.
(参考数值:sin75°=62
4
+
,cos75°=
62
4
-
,tan75°=23
+)
21.(6分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.
22.(8分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
(1)分别判断函数y=﹣x+1,y=
1
x
-,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y=
2
2
3()
3()
x x x m
x x x m
⎧-≥

--<

请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值
范围.
23.(8分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
24.(10分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)
25.(10分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).
26.(12分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.
27.(12分)解不等式组
22(4)
1
1
3
x x
x
x
-≤+


-

+
⎪⎩<
,并写出该不等式组的最大整数解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.C
【解析】
【分析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
930.7 1640.8 2550.5
a b c
a b c
a b c
++=


++=

⎪++=

解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,
当t=−
1.5
-0.22

=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键. 2.B
【解析】
试题解析:x 2-8x+15=0,
分解因式得:(x-3)(x-5)=0,
可得x-3=0或x-5=0,
解得:x 1=3,x 2=5,
若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
综上,△ABC 的周长为11或1.
故选B.
考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
3.B
【解析】
【分析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km ,可求出速度为69km/h ,错误.
④慢车6个小时走了276km ,可求出速度为46km/h ,正确.
⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B .
【点睛】
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
4.C
【解析】
【分析】
先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .
【详解】
解:因为DE 垂直平分BC ,
所以8BE CE ==,
在Rt BDE V 中,30B ∠=︒, 则118422
ED BE ==⨯=; 故选:C .
【点睛】
本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
5.D
【解析】
【分析】
由已知条件得到AD′=AD=4,AO=
12AB=2,根据勾股定理得到 ,于是得到结论.
【详解】
解:∵AD′=AD=4, AO=12
AB=1,
∴,
∵C′D′=4,C′D′∥AB ,
∴C′(4,),
故选:D .
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
6.C
【解析】
【分析】
接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】
A
B 、a 2•a 3=a 5,故此选项错误;
C 、a 3÷a 2=a ,正确;
D 、(a 2b )2=a 4b 2,故此选项错误.
故选C .
【点睛】
此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
7.B
【解析】
【分析】
根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】
解:设第一批购进x件衬衫,则所列方程为:
10000
x +10=()
14700
1400x
+.
故选B.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.
8.B
【解析】
【分析】
利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.
【详解】
解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;
B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;
C、“明天降雨的概率为1
2
”,表示明天有可能降雨,此选项错误;
D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;
故选B.
【点睛】
本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.9.D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
10.C
【解析】
【分析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
11.D
【解析】
【分析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣1
2
(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
12.B
【解析】
【详解】
解:∵∠CDB=30°,
∴∠COB=60°,
又∵CD⊥AB于点E,
∴sin60
︒==,
解得CE=3
2
cm,CD=3cm.
故选B.
考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
14.1.
【解析】
【分析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.
【详解】
解:∵该班有40名同学,
∴这个班同学年龄的中位数是第20和21个数的平均数.
∵14岁的有1人,1岁的有21人,
∴这个班同学年龄的中位数是1岁.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.
15.k≥﹣1
【解析】
分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
∴△=12-1×1×(-k)=16+1k≥0,
解得:k≥-1.
故答案为k≥-1.
点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
16.6.28×1.
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
62800用科学记数法表示为6.28×1.
故答案为6.28×1.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17.4
【解析】
试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∵EF∥BC,
∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
∴BE=DE,DF=EC,
∵EF=DE+DF,
∴EF=EB+CF=2BE,
∵等边△ABC的边长为6,
∵EF∥BC,
∴△ADE是等边三角形,
∴EF=AE=2BE,
∴EF==,
故答案为4
考点:等边三角形的判定与性质;平行线的性质.
18.3或1
【解析】
【分析】
分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.
【详解】
当△CEF为直角三角形时,有两种情况:
当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC=22
=10,
AB BC
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,
∴CF=10﹣1=4,
设BE=x,则EF=x,CE=8﹣x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故答案为3或1.
【点睛】
本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A
【解析】
过点A作AD⊥BC于点D,
在Rt△ADC中,
由得tanC=∴∠C=30°∴AD=AC=×240=120(米)
在Rt△ABD中,∠B=45°∴AB=AD=120(米)
120÷(240÷24)=120÷10=12(米/分钟)
答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
20.(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62
【解析】
【分析】
(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=1
2
(90°-60°)
=15°;
(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).
【详解】
解:(1)如图1中,当点E在BC上时.
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=∠AEC=120°,
∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
在△ABD和△ACE中,
∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,
∴∠BAD=∠CAE=1
2
(90°-60°)=15°.
(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=1
2
∠BAC=45°.
②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,
∴AC垂直平分线段DE,
∴∠ACD=∠ACE=45°,
∴∠DCE=90°,
∴∠EDC=∠CED=45°,
∵∠B=45°,
∴∠EDC=∠B,
∴DE∥AB,
∴∠BAD=∠ADE=60°.
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,
∴△AOE∽△DOE′,
∴AO:OD=EO:OE',
∴AO:EO=OD:OE',
∵∠AOD=∠EOE′,
∴△AOD∽△EOE′,
∴∠EE′O=∠ADO=60°,
∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),
∴EC的最小值即为线段CM的长(垂线段最短),
设E′N=CN=a,则AN=4-a,
在Rt△ANE′中,tan75°=AN:NE',
∴34a
a
-

∴2
3 3
∴222
6
3

在Rt△CE′M中,62∴CE62
【点睛】
本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.
21.(1)详见解析;(2)∠BDE=20°.
【解析】
【分析】
(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得
∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得
∠OAD=1
2
∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.
【详解】
(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠ABC,
∴BC∥DF,
∴∠F=∠PBC,
∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,
∵∠PCB+∠DCB=180°,
∴∠F=∠PCB,
∴∠PBC=∠PCB,
∴PC=PB;
(2)如图2,连接OD,
∵AC是⊙O的直径,
∴∠ADC=90°,
∵BG ⊥AD ,
∴∠AGB=90°,
∴∠ADC=∠AGB ,
∴BG ∥DC ,
∵BC ∥DE ,
∴四边形DHBC 是平行四边形,
∴BC=DH=1,
在Rt △ABC 中,tan ∠ACB=
AB BC ∴∠ACB=60°,
∴BC=12
AC=OD , ∴DH=OD ,
在等腰△DOH 中,∠DOH=∠OHD=80°,
∴∠ODH=20°,
设DE 交AC 于N ,
∵BC ∥DE ,
∴∠ONH=∠ACB=60°,
∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,
∴∠DOC=∠DOH ﹣∠NOH=40°,
∵OA=OD ,
∴∠OAD=12
∠DOC=20°, ∴∠CBD=∠OAD=20°,
∵BC ∥DE ,
∴∠BDE=∠CBD=20°.
【点睛】
本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.
22.(1)y =−1x
有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n≤8;(3)当m >2或m≤﹣2时,n =2,当﹣2<m≤2时,n =2.
【解析】
【分析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=
1
m
-时,m=±1,∴n=1﹣(﹣1)=2,故y=
1
x
-有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=
2
2
3()
3() x x x m
x x x m
⎧-≥

--<


∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣2,
∴n=0﹣(﹣2)=2,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
当﹣2<m≤2时,n=2.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新
定义解答相关问题.
23.(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
24.古塔AB的高为(103+2)米.
【解析】
试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.试题解析:如图,延长EF交AB于点G.
设AB=x米,则BG=AB﹣2=(x﹣2)米.
则EG=(AB﹣2)÷tan∠3x﹣2),CA=AB÷tan∠3

则CD=EG﹣3x﹣23

解可得:3.
答:古塔AB的高为(3+2)米.
25.CD的长度为317cm.
【解析】
【分析】
在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【详解】
解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,
∴∠BCE=30°,tan30°=BE EC

∴BE=ECtan30°=51×3
3(cm);
∴CF=AE=34+BE=(3cm,在Rt△AFD中,∠FAD=45°,
∴∠FDA=45°,
∴DF=AF=EC=51cm,
则CD=FC ﹣
﹣17,
答:CD 的长度为
17cm .
【点睛】
本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC 与FD 的长度,即可求出答案.
26.证明见解析.
【解析】
【分析】
由题意易用角角边证明△BDE ≌△CDF ,得到DF=DE ,再用等量代换的思想用含有AE 和AF 的等式表示AD 的长.
【详解】
证明:∵CF ⊥AD 于,BE ⊥AD ,
∴BE ∥CF ,∠EBD=∠FCD ,
又∵AD 是△ABC 的中线,
∴BD=CD ,
∴在△BED 与△CFD 中,
EBD FCD BED CFD BD CD ∠∠⎧⎪∠∠⎨⎪⎩
=== ,
∴△△BED ≌△CFD (AAS )
∴ED=FD ,
又∵AD=AF+DF ①,
AD=AE-DE ②,
由①+②得:AF+AE=2AD.
【点睛】
该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.
27.﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩
①②, 解不等式①得,x≥−2, 解不等式②得,x<1,
∴不等式组的解集为−2≤x<1. ∴不等式组的最大整数解为x=0,。

相关文档
最新文档