苏教版七年级上册数学 压轴解答题中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版七年级上册数学 压轴解答题中考真题汇编[解析版]
一、压轴题
1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.
(1)求AB 的值;
(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;
(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.
2.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式
2
241x x --+的一次项系数,b 是最小的正整数,单项式24
12
x y -
的次数为.c
()1a =________,b =________,c =________;
()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);
()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同
时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则
AB =________,BC =________(用含t 的代数式表示);
()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,
请求其值.
3.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.
利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.
()1点A 表示的数为______,点B 表示的数为______.
()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.
()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到
达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.
4.点A、B在数轴上分别表示数,a b,A、B两点之间的距离记为AB.我们可以得到=-:
AB a b
(1)数轴上表示2和5的两点之间的距离是;数轴上表示-2和-5两点之间的距离
是;数轴上表示1和a的两点之间的距离是.
(2)若点A、B在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C对应的数为c.
+的值,请用含c的代数式表示;
①求电子蚂蚁在点A的左侧运动时AC BC
c c,c表示的数是多少?
②求电子蚂蚁在运动的过程中恰好使得1511
c c的最小值是.
③在电子蚂蚁在运动的过程中,探索15
5.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.
(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)
-和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20
点C在数轴上表示的数。

(应用拓展)
(3)在(2)的条件下,动点P从点A处,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达中点时,两个点运动同时停止,当A、P、Q三点中,其中一点恰好是另外两点为端
t s的所有可能值.
点的线段的巧点时,直接写出运动时间()
6.某市两超市在元旦节期间分别推出如下促销方式:
甲超市:全场均按八八折优惠;
乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;
已知两家超市相同商品的标价都一样.
(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?
(2)当购物总额是多少时,甲、乙两家超市实付款相同?
(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 7.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.
(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.
(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角
(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?
8.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为
12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)
(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值; (2)当06t <<时,探究
BON COM AOC
MON
∠-∠+∠∠的值,问:t 满足怎样的条件是定
值;满足怎样的条件不是定值?
9.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?
通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;
情况②当点C 在点B 的左侧时, 如图2此时,AC =5.
仿照上面的解题思路,完成下列问题:
问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且
BC =2AB ,则点C 表示的数是.
问题(2): 若2x =,3y =求x y +的值.
问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,
OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).
10.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;
(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.
11.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
12.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•
化为分数形式, 由于0.70.777

=,设0.777x =,①
得107.777x =,②
②−①得97x =,解得7
9x =,于是得70.79•=.
同理可得310.393•
==,413
1.410.4199
••=+=+=.
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•
= ;
(2)将0.27••
化为分数形式,写出推导过程; (迁移提升)
(3)0.225•

= ,2.018⋅⋅= ;(注0.2250.225225•

=,2.018 2.01818⋅⋅=)
(拓展发现) (4)若已知5
0.7142857
=
,则2.285714= .
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)8;(2)4或10;(3)t 的值为167和329
【解析】 【分析】
(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;
(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可. 【详解】
解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6 ∴AB =6﹣(﹣2)=8 答:AB 的值为8.
(2)设点C 表示的数为x ,由题意得 |x ﹣(﹣2)|=3|x ﹣6| ∴|x +2|=3|x ﹣6|
∴x +2=3x ﹣18或x +2=18﹣3x ∴x =10或x =4
答:点C 表示的数为4或10.
(3)∵点C 位于A ,B 两点之间,
∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t , ①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t ∴AC =t +2,BC =6﹣2t ∴t +2=3(2t ﹣6) 解得t =
167
②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t ∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6 ∴|3t ﹣14|=3(2t ﹣6) 解得t =
329
或t =43,其中4
3<3不符合题意舍去
答:t 的值为167和329
【点睛】
本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.
2.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10 【解析】 【分析】
(1)由一次项系数、最小的正整数、单项式次数的定义回答即可, (2)计算线段长度,若AB BC =则重叠,
(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可, (4)根据(3)的结果计算即可. 【详解】
(1)观察数轴可知,
4a =-,1b =,6c =.
故答案为:4-;1;6.
(2)()145AB =--=,615BC =-=,AB BC =, 则若将数轴在点B 处折叠,点A 与点C 能重合. 故答案为:能.
(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,
53BC b c t =-=+.
故答案为:5t +;53t +. (4)5AB t =+, ∴3153AB t =+. 又53BC t =+,
∴()()315353AB BC t t -=+-+
15353t t =+-- 10=.
故3AB BC -的值不会随时间t 的变化而变化,值为10. 【点睛】
本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.
3.(1)2412--;
;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【解析】 【分析】
()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P
从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数
242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数
24-,点C 表示数12,所以()PA 242t 242t =-+--=,
PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点
Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】
()1设A 表示的数为x ,设B 表示的数是y .
x 24=,x 0<
∴x 24=- 又
y x 12-=
y 241212.∴=-+=-
故答案为24-;12-.
()2由题意可知:
t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C
表示数12
()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.
故答案为2t ;362t -.
()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.
①当m 9≤,m 秒后点Q 表示的数是244m -+,则
()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,
当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;
②当m 9>时,m 秒后点Q 表示的数是()124m 9--,
则()()PQ 124m 9122m 2=----+=, 解得2931m 33
或=, 当m=293时,-12+2m=223, 当m=
313时,-12+2m=263
, 此时点P 表示的数是
2226
33
或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【点睛】
本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 4.(1)3,3,1a -;(2)①42c -;②72-或15
2
;③6 【解析】 【分析】
(1)根据两点间的距离公式解答即可;
(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;
②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式1
5c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,
于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.
【详解】
解:(1)数轴上表示2和5的两点之间的距离是523-=; 数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,
∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;
②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1
511c c ,
∴()()1511c c -+--=,解得:72
c =-
; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1
511c c ,
∴15611c c ++-=≠,故此种情况不存在;
若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1
511c c ,
∴()()1511c c ++-=,解得:152
c =; 综上,c 表示的数是72-或152
; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之
和,
∴当15c -≤≤时,代数式15c c 的最小值是()516--=,
即代数式15c c 的最小值是6.
故答案为:6. 【点睛】
本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键. 5.(1)是;(2)10或0或20;(3) 152t =;t=6;607t =;t=12;907t =;45
4
t =. 【解析】 【分析】
(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;
(2)由题意设C 点表示的数为x ,再根据新定义列出合适的方程即可;
(3)根据题意先用t 的代数式表示出线段AP ,AQ ,PQ ,再根据新定义列出方程,得出合适的解即可求出t 的值. 【详解】
解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点, 故答案为:是;
(2)设C 点表示的数为x ,则AC=x+20,BC=40-x ,AB=40+20=60,
根据“巧点”的定义可知: ①当AB=2AC 时,有60=2(x+20), 解得,x=10;
②当BC=2AC 时,有40-x=2(x+20), 解得,x=0;
③当AC=2BC 时,有x+20=2(40-x ), 解得,x=20.
综上,C 点表示的数为10或0或20; (3)由题意得()
()60601026046601015t t AP t AQ t PQ t t -≤≤⎧⎪==-=⎨
-≤⎪⎩
,,<,
(i )、若0≤t ≤10时,点P 为AQ 的“巧点”,有 ①当AQ=2AP 时,60-4t=2×2t , 解得,15
2
t =
, ②当PQ=2AP 时,60-6t=2×2t , 解得,t=6;
③当AP=2PQ 时,2t=2(60-6t ), 解得,607
t =
; 综上,运动时间()t s 的所有可能值有152t =;t=6;607
t =; (ii )、若10<t ≤15时,点Q 为AP 的“巧点”,有 ①当AP=2AQ 时,2t=2×(60-4t ), 解得,t=12;
②当PQ=2AQ 时,6t-60=2×(60-4t ),
解得,907t =
; ③当AQ=2PQ 时,60-4t=2(6t-60), 解得,454
t =
. 综上,运动时间()t s 的所有可能值有:t=12;907t =;454
t =. 故,运动时间()t s 的所有可能值有:152t =;t=6;607t =;t=12;907t =;454
t =. 【点睛】
本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.
6.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.
【解析】
【分析】
(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;
(2)设当标价总额是x 元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x 的一元一次方程,解之即可得出结论;
(3)设购物总额是x 元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.
【详解】
(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;
(2)设购物总额是x 元,由题意知x >500,列方程:
0.88x =500×0.9+0.8(x -500)
∴x =625
∴购物总额是625元时,甲、乙两家超市实付款相同.
(3)设购物总额是x 元,购物总额刚好500元时,在乙超市应付款为:
500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:
500×0.9+0.8(x -500)=482
∴x =540
∴0.88x =475.2<482
∴该顾客选择不划算.
【点睛】
本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.
7.(1)45;(2)
(1)2n n -;(3)(1)2
n n -;(4)共需拍照991张,共需冲印2025张纸质照片
【解析】
【分析】
(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;
(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;
(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;
(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线
段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.
【详解】
解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).
故答案为:45;
(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条.
故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成
(1)2n n -个角; 故答案为:
(1)2n n -; (4)解:4545-119912
+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片
【点睛】
此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意. 8.(1)t 的值为1秒或
52651秒; (2)当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103
<t <6时,BON COM AOC MON
∠-∠+∠∠不是定值. 【解析】
【分析】
(1)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t <12时,分别根据已知条件列等式可得t 的值;
(2)分两种情况,分别计算∠COM 、∠BON 和∠MON 的度数,代入可得结论.
【详解】
(1)当ON 与OA 重合时,t=90÷12=7.5(s )
当OM 与OA 重合时,t=180°÷15=12(s )
①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,
由∠AOM=3∠AON-69°,可得180-15t=3(90-12t )-69,
解得t=1;
②如图所示,当7.5<t <12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-69°,可得180-15t=3(12t-90)-69,解得t=
52651, 综上,t 的值为1秒或52651
秒; (2)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°, ∴15t+90+12t=180,解得t=
103, ①如图所示,当0<t <103
时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°=02790t +,
∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)902790t t t +--++=00
00
27902790t t ++=1(是定值),
②如图所示,当103
<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,
∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)9027027t t t +--+-=00
00902727027t t
+-(不是定
综上所述,当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103
<t <6时,BON COM AOC MON
∠-∠+∠∠不是定值. 【点睛】
本题主要考查了角的和差关系的计算,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
9.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.
【解析】
【分析】
问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.
问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.
【详解】
解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.
问题(2)∵2x =,3y =∴2, 3.x y =±=±
情况① 当x=2,y=3时,x y +=5,
情况② 当x=2,y=-3时,x y +=-1,
情况③ 当x=-2,y=3时,x y +=1,
情况④ 当x=-2,y=-3时,x y +=-5,
所以,x y +的值为1,-1,5,-5.
问题⑶
【点睛】
本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.
10.(1)22.5° (2)1 2
n° (3) 120
【解析】
(1)由∠AOE=45°,可以求得∠BOE=135°,再由OC平分∠BOE,可求得∠COE=67.5°,∠EOF为直角,所以可得∠COF=∠EOF-∠EOC=22.5°;
(2)由(1)的方法即可得到∠COF=1
2 n°;
(3)先设∠BOF为x°,再根据角的关系得出方程,解答后求出n的值即可.【详解】
解:(1)∵∠AOE=45°,
∴∠BOE=135°,
∵OC平分∠BOE,
∴∠COE=67.5°,
∵∠EOF为直角,
∴∠COF=∠EOF-∠EOC=22.5°,
(2))∵∠AOE=n°,
∴∠BOE=180°-n°,
∵OC平分∠BOE,
∴∠COE=1
2
(180°-n°),
∵∠EOF为直角,
∴∠COF=∠EOF-∠EOC=90°-1
2
(180°-n°)=
1
2
n°,
(3)设∠BOF为x°,∠AOD为(x+45)°,∠EOB为(90-x)°,OC平分∠BOE,则可得:∠AOD+∠DOC+∠EOB=∠AOB+∠EOC.
x+45+x+45+90-x=180+1
2
(90-x),
解得:x=30,
所以可得:∠EOB=(90-x)°=60°,
∠AOE=180°-∠EOB=180°-60°=120°,
故n的值是120.
【点睛】
本题考查了角平分线定义,邻补角定义,角的和差,准确识图是解题的关键.从一个角的
顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,
∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=1
2∠AOC+1
2
∠COE,进而求出即可;
(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE
=4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,
12.(1)14
3
;(2)
3
11
;(3)
25
111

111
55
;(4)
16
7
【解析】
【分析】
(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.
(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.
(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.
(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把
0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.
【详解】
解:(1)
612214 4.6=4+0.6=4+=+=
9333
故答案为:14 3
(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27
解得:x=27 99
∴x=
3 11

3 0.27=
11
(3)
22525 0.225==
999111

182 0.18=0.181818=
9911

211 0.0181818==
111055

1111 2.018=2+0.018=2+=
5555
故答案为:
25
111

111
55
(4)
5 0.714285=
7
∴等号两边同时乘以1000得:
5000 714.285714=
7

500016 2.285714=714.28571-712=-712=
77
故答案为:16 7
【点睛】
本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.。

相关文档
最新文档