东湖开发虚拟实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东湖开发虚拟实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)在这些数中,无理数有()个.
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,,
∴无理数有2个.
故答案为:B.
【分析】无理数定义:无限不循环小数,由此即可得出答案.
2、(2分)下列各数中,2.3,,3.141141114…,无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:∵
∴无理数有:、、3.141141114…一共3个
故答案为:B
【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。
3、(2分)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()
A.每100克内含钙150毫克
B.每100克内含钙高于150毫克
C.每100克内含钙不低于150毫克
D.每100克内含钙不超过150毫克
【答案】C
【考点】不等式及其性质
【解析】【解答】解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故答案为:C
【分析】”≥”就是“不小于”,在本题中就是“不低于”的意思。
4、(2分)如果(y+a)2=y2-8y+b,那么a,b的值分别为()
A. 4,16
B. -4,-16
C. 4,-16
D. -4,16
【答案】D
【考点】平方根,完全平方公式及运用
【解析】【解答】解:因为(y+a)2=y2+2ay+a2=y2-8y+b,
解得
故答案为:D
【分析】利用完全平方公式将等式左边的括号展开,根据对应项的系数相等,建立关于a、b的方程组,求解即可。
5、(2分)适合下列二元一次方程组中的()
A. B. C. D.
【答案】C
【考点】二元一次方程组的解
【解析】【解答】把分别代入各个方程组,A、B、D都不适合,只有C适合.
故答案为:C.
【分析】将x=2、y=-1,分别代入各个方程组A、B、C、D中,判断即可。
6、(2分)若不等式组有三个非负整数解,则m的取值范围是()
A.3<m<4
B.2<m<3
C.3<m≤4
D.2<m≤3
【答案】D
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组,可得,,即-3≤x<m,该不等式组有三个非负整数解,分析可知,这三个非负整数为0、1、2,由此可知2≤m<3.
【分析】首先确定不等式组非负整数解,然后根据不等式的非负整数解得到一个关于m的不等式组,从而求解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
7、(2分)如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是()
A. 1<BO<11
B. 2<BO<22
C. 10<BO<12
D. 5<BO<6
【答案】A
【考点】一元一次不等式组的应用,三角形三边关系,平行四边形的判定与性质
【解析】【解答】解:如图延长BO到D,使OB=OD,连接CD,AD,
则四边形ABCD是平行四边形,
在△ABD中,AD=10,BA=12,
所以2<BD<22,所以1<BO<11答案。
故答案为:A.
【分析】如图延长BO到D,使OB=OD,连接CD,AD,根据对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,根据平行四边形对边相等得出AD=BC=10,在△ABD中,根据三角形三边之间的关系得出AB-AD<BD<AB+AD,即2<BD<22,从而得出
8、(2分)下列运算正确的是()
A. =±3
B. (﹣2)3=8
C. ﹣22=﹣4
D. ﹣|﹣3|=3
【答案】C
【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方
【解析】【解答】解:A、原式=2 ,不符合题意;
B、原式=﹣8,不符合题意;
C、原式=﹣4,符合题意;
D、原式=﹣3,不符合题意,
故答案为:C.
【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。
A项:指的是求8的算术平方根(在这里,我们要区分平方根与算数平方根的区别,求平方根的符号是);B项:指的是3个-2相乘,即(-2)(-2)(-2)=-8;C项要特别注意负号在的位置(区分与),像是先算,再在结果前面填个负号,所以结果是-4;D项:先算绝对值,再算绝对值之外的,所以答案是-3
9、(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:二元一次方程x-2y=1 ,
当时,,故A. 是方程 x-2y=1 的解;
当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;
当x=-1 时,y=-1 ,故 D. 是方程 x-2y=1 的解,
故答案为:B
【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
10、(2分)若m是9的平方根,n= ,则m、n的关系是()
A.m=n
B.m=-n
C.m=±n
D.|m|≠|n|
【答案】C
【考点】平方根
【解析】【解答】因为(±3)2=9,所以m=±3;因为()2=3,所以n=3,所以m=±n
故答案为:C
【分析】由正数的平方根有两个,可以求得9的平方根,进而求得m的值,根据,可以求得n 的值,比较m与n的值即可得到它们的关系。
11、(2分)计算=()
A. -8
B. 2
C. -4
D. -14
【答案】A
【考点】实数的运算
【解析】【解答】原式=-5-3=-8.故答案为:A
【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。
12、(2分)下列命题:
①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;
④如果一个数的立方根等于它本身,那么它一定是1或0.
其中正确有()个.
A. 1
B. 2
C. 3
D. 4
【答案】A
【考点】立方根及开立方
【解析】【解答】解:①负数没有立方根,错误;
②一个实数的立方根不是正数就是负数或0,故原命题错误;
③一个正数或负数的立方根与这个数的符号一致,正确;
④如果一个数的立方根等于它本身,那么它一定是±1或0,故原命题错误;
其中正确的是③,有1个;
故答案为:A
【分析】根据立方根的定义与性质,我们可知:1.正数、负数、0都有立方根;2.正数的立方根为正数,负数的立方根为负数;0的立方根仍为0;与0的立方根都为它本身。
二、填空题
13、(1分)对于有理数,定义新运算:* ;其中是常数,等式右边是通常
的加法和乘法运算,已知,,则的值是________ .
【答案】-6
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:根据题中的新定义化简1∗2=1,(−3)∗3=6得:,
解得:,
则2∗(−4)=2×(−1)−4×1=−2−4=−6.
故答案为:−6
【分析】根据新定义的运算法则:* ,由已知:,,建立关于a、b的
方程组,再利用加减消元法求出a、b的值,然后就可求出的结果。
14、(10分)如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.求证:∠C=∠D.
证明:因为∠1=∠2(已知),∠1=∠3________
得∠2=∠3________
所以AE//________ ________
得∠4=∠F________
因为________(已知)
得∠4=∠A
所以________//________ ________
所以∠C=∠D________
【答案】对顶角相等;等量代换;BF;同位角相等,两直线平行;两直线平行,同位角相等;∠A=∠F;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等
【考点】平行线的判定与性质
【解析】【解答】解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换)
∴AE//BF (同位角相等,两直线平行)
∴∠4=∠F(两直线平行,同位角相等)
∵∠A=∠F (已知)
∴∠4=∠A
∴DF//AC (内错角相等,两直线平行)
∴∠C=∠D (两直线平行,内错角相等)
【分析】由对顶角相等可得∠1=∠3,所以结合已知可得∠2=∠3,根据同位角相等,两直线平行可得AE//BF,根据两直线平行,同位角相等可得∠4=∠F,于是结合已知可得∠4=∠A,根据内错角相等,两直线平行可得DF//AC,所以根据两直线平行,内错角相等可得∠C=∠D。
15、(1分)图形在平移时,下列特征:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,其中不发生改变的有________ (把你认为正确的序号都填上)
【答案】①③④⑤⑥
【考点】平移的性质
【解析】【解答】解:∵平移只改变图形的位置
∴:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,都不会改变。
故答案为:①③④⑤⑥【分析】根据平移的性质,可知平移只改变图形的位置,即可得出答案。
16、(1分)二元一次方程组的解是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:原方程可化为:,
化简为:,
解得:.
故答案为:
【分析】先将原方程组进行转化为并化简,就可得出,再利用加减消元法,就可求出方程组的解。
17、(1分)如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD 绕点O按逆时针方向至少旋转________度。
【答案】12
【考点】平行线的性质,图形的旋转
【解析】【解答】解:∵OD∥AC,∠A=70°
∴∠BOD=70°
∵∠BOD=82°
∴旋转的角度=82°-70°=12°
故答案为:12。
【分析】根据平行线的性质,两直线平行,同位角相等,即可求得∠BOD的度数,从而得到旋转的角度。
18、(1分)若的平方根等于它本身,,互为倒数,,两数不相等,且数轴上表示,两
个数的点到原点的距离相等,则的值为________.
【答案】1
【考点】有理数的倒数,平方根,含乘方的有理数混合运算
【解析】【解答】∵a的平方根等于它本身,∴a=0.
∵x,y互为倒数,∴xy=1.
∵p,q两数不相等,且数轴上表示p,q两个数的点到原点的距离相等,∴p+q=0,∴(a+1)2﹣(﹣xy)2016(p+q)
=12﹣(﹣1)2016×0
=1﹣0
=1.
故答案为:1.
【分析】两个乘积是1的数互为倒数;正数有两个平方根,0的平方根是0;由两个数的点到原点的距离相等,得到两数是相反数,之和是0;计算即可.
三、解答题
19、(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,
得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
20、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55° ,最后根据三角形内角和定理得出答案。
21、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
22、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.
23、(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.
24、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
25、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
26、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.。