大兴区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大兴区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数y=sin (2x+)图象的一条对称轴方程为(
)
A .x=﹣
B .x=﹣
C .x=
D .x=
2. 函数f (x )=的定义域为( )
A .[1,2)
B .(1,+∞)
C .[1,2)∪(2,+∞)
D .[1,+∞)
3. 双曲线的渐近线方程是( )A .B .
C .
D .
4. 圆()与双曲线的渐近线相切,则的值为( )2
2
2
(2)x y r -+=0r >2
2
13
y x -=r
A B . C . D .2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
5. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( )
A .R
B .[1,+∞)
C .(﹣∞,1]
D .[2,+∞)
6. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=(
)
A .
B .
C .
D .6
7. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有(
)
A .a >b
B .a <b
C .a=b
D .a ,b 的大小与m ,n 的值有关8. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为(
)
A .
B .﹣
C .﹣
D .
9. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则
等(
)
A .
B .
C .
D .10.设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为(
)
2+a i
1+i
A .3
B .2
C .1
D .0
11.cos80cos130sin100sin130︒︒-︒︒等于( )
A B .1
2 C .1
2
-
D .
12.已知函数f (x )=1+x ﹣+
﹣
+…+,则下列结论正确的是(
)
A .f (x )在(0,1)上恰有一个零点
B .f (x )在(﹣1,0)上恰有一个零点
C .f (x )在(0,1)上恰有两个零点
D .f (x )在(﹣1,0)上恰有两个零点
二、填空题
13.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .
14.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .15.设函数f (x )=
,
①若a=1,则f (x )的最小值为 ;
②若f (x )恰有2个零点,则实数a 的取值范围是 .
16.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足
,则以此估计的π值为 .
17.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN 所成角的余弦值为 .
18.椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为 .
三、解答题
19.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p 为真,求实数m的取值范围.
20.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.
21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;
(2)当CE⊥OD时,求证:AO=AD.
22.已知f(x)=|﹣x|﹣|+x|
(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;
(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.
23.已知等差数列{a n}满足a2=0,a6+a8=10.
(1)求数列{a n}的通项公式;
(2)求数列{}的前n项和.
24.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;
(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h (x2)=g(x1)成立,求实数a的值.
大兴区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,
求得x=π,可得它的图象的对称轴方程为x=π,k∈z,
故选:A.
【点评】本题主要考查正弦函数的图象的对称性,属于基础题.
2.【答案】C
【解析】解:要使函数f(x)有意义,则,
即,
解得x≥1且x≠2,
即函数f(x)的定义域为[1,2)∪(2,+∞).
故选:C.
【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.
3.【答案】B
【解析】解:∵双曲线标准方程为,
其渐近线方程是=0,
整理得y=±x.
故选:B.
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
4.【答案】C
【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,
故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,
又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.
故答案为:C
6.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
7.【答案】C
【解析】解:根据茎叶图中的数据,得;
甲得分的众数为a=85,
乙得分的中位数是b=85;
所以a=b.
故选:C.
8.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,
故选:D.
【解析】解:∵M 、G 分别是BC 、CD 的中点,
∴=
,
=
∴=
+
+
=
+
=
故选C
【点评】本题考查的知识点是向量在几何中的应用,其中将化为
+
+
,是解答本题的关
键.
10.【答案】
【解析】选A.由
=3+b i 得,2+a i
1+i
2+a i =(1+i )(3+b i )=3-b +(3+b )i ,∵a ,b ∈R ,
∴,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A.{2=3-b a =3+b
)
11.【答案】D 【解析】
试题分析:原式()()cos80cos130sin80sin130cos 80130cos 210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒
=.考点:余弦的两角和公式.12.【答案】B
【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014;∴f ′(x )>0在(﹣1,0)上恒成立;故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,
f (﹣1)=1﹣1﹣﹣﹣…﹣<0;
故f (x )在(﹣1,0)上恰有一个零点;
故选B .
【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.
二、填空题
13.【答案】 .
【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,
设点P到CD的距离为h,
则有V=×2×h××2,
当球的直径通过AB与CD的中点时,h最大为2,
则四面体ABCD的体积的最大值为.
故答案为:.
【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
14.【答案】 ﹣12 .
【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,
∴==,
解得x=﹣6,y=6,
x﹣y=﹣6﹣6=﹣12.
故答案为:﹣12.
【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.
15.【答案】 ≤a<1或a≥2 .
【解析】解:①当a=1时,f(x)=,
当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,
当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,
当1<x<时,函数单调递减,当x>时,函数单调递增,
故当x=时,f(x)min=f()=﹣1,
②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)
若在x<1时,h(x)=与x轴有一个交点,
所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,
而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,
所以≤a<1,
若函数h(x)=2x﹣a在x<1时,与x轴没有交点,
则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,
当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),
当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,
综上所述a的取值范围是≤a<1,或a≥2.
16.【答案】 .
【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
17.【答案】 .
【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角
设边长为1,则B1E=B1F=,EF=
∴cos∠EB1F=,
故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
18.【答案】 20 .
【解析】解:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.
∴△PQF2的周长=20.,
故答案为20.
【点评】作出草图,结合图形求解事半功倍.
三、解答题
19.【答案】
【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣;
若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.
若p∨q为真,¬p为真,
则p为假命题,q为真命题.
∴.
∴实数m的取值范围是或.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
20.【答案】
【解析】(本小题满分12分)
解:(1)∵bsinA=,
由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,
∴B=…
(2)△ABC的面积.
由已知及余弦定理,得.
又a2+c2≥2ac,
故ac≤4,当且仅当a=c时,等号成立.
因此△ABC面积的最大值为…
21.【答案】
【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.
∵∠BOD=∠A,∴△OBD∽△AOC.∴,
∵OC=OD=6,AC=4,∴,∴BD=9.…
(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.
∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.
∴AD=AO …
【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.
22.【答案】
【解析】解:(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,即|﹣x|﹣|+x|≥a2﹣3a恒成立.
由于f(x)=|﹣x|﹣|+x|=,故f(x)的最小值为﹣2,
∴﹣2≥a2﹣3a,求得1≤a≤2.
(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,
若f(m)+f(n)=4,∴m<n≤﹣,∴m+n<﹣5.
【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.
23.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.
∴,解得,
∴a n﹣1+(n﹣1)=n﹣2.
(2)=.
∴数列{}的前n项和S n=﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n=.
24.【答案】
【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;
f(1)>f(3)所以f(x)max=f(1)=5
所以f(x)在x∈[1,3]的值域为[4,5].
(2)y=g(x)==2x+1+﹣8
设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,
由已知性质得,
当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];
当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];
由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].
因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].
根据题意,g(x)的值域为h(x)的值域的子集,
从而有,所以a=.。