西市区第二中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西市区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为()A.M∪N B.(∁U M)∩N C.M∩(∁U N)D.(∁U M)∩(∁U N)
2.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}的元素个数为()
A.4 B.5 C.6 D.9
3.已知函数f(x)=e x+x,g(x)=lnx+x,h(x)=x﹣的零点依次为a,b,c,则()
A.c<b<a B.a<b<c C.c<a<b D.b<a<c
N ,则输出的S的值是()
4.在下面程序框图中,输入44
A.251B.253C.255D.260
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.
5. 若复数z 满足
=i ,其中i 为虚数单位,则z=( )
A .1﹣i
B .1+i
C .﹣1﹣i
D .﹣1+i
6. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
7. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )
A .
B .
C .
D . =0.08x+1.23
8. 已知抛物线C :2
8y x 的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,
Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )
A .20x y --=
B .20x y +-=
C .20x y -+=
D .20x y ++= 9. 下列计算正确的是( )
A 、213
3
x x x ÷= B 、4554()x x = C 、455
4x x
x = D 、4455
0x x -
=
10.已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )
A .1
B .
C .
D .
11.若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
12.已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1
D .﹣1
二、填空题
13.已知圆O :x 2+y 2=1和双曲线C :
﹣
=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O
外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则
﹣
= .
14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.
15.已知线性回归方程
=9,则b= .
16.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .
17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系
是 .
18.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}
(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:
①若(1,4)(,)λμ-∈Ω,则1λμ==;
②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)
(,2)(1,5)μλΩΩ=;
⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .
三、解答题
19.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两
点.已知A ,B 的横坐标分别为,
.
(1)求tan (α+β)的值; (2)求2α+β的值.
20.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.
21.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .
(1)求A ;
(2)若a=2,△ABC 的面积为,求b ,c .
22.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;
(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.
23.(本小题满分12分)
已知圆M 与圆N :2
22)35()35(r y x =++-关于直线x y =对称,且点)3
5,31(-D 在圆M 上.
(1)判断圆M 与圆N 的位置关系;
(2)设P 为圆M 上任意一点,)35,1(-A ,)3
5,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交
AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.
24.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.
(1)求数列{a n }的通项公式;
(2)设,T n 是数列{b n }的前n 项和,求:使得
对所有n ∈N *
都成立的最大正整数m .
西市区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N∩(∁U M)={0,1},
故选:B.
【点评】本题主要考查集合的子交并补运算,属于基础题.
2.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
3.【答案】B
【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.
在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知
a<0,0<b<1,
所以a<b<c.
故选:B.
【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.
4.【答案】B
5.【答案】A
【解析】解:=i,则=i(1﹣i)=1+i,
可得z=1﹣i.
故选:A.
6.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.7.【答案】C
【解析】解:法一:
由回归直线的斜率的估计值为1.23,可排除D
由线性回归直线方程样本点的中心为(4,5),
将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B
法二:
因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
8.【答案】B
【解析】
考点:抛物线的定义及性质.
【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.
9.【答案】B
【解析】
试题分析:根据()a aβααβ⋅=可知,B正确。
考点:指数运算。
10.【答案】D
【解析】解:∵=(1,1,0),=(﹣1,0,2),
∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k+与2﹣互相垂直,
∴3(k﹣1)+2k﹣4=0,解得:k=.
故选:D.
【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.
11.【答案】D
【解析】解:模拟执行算法框图,可得
A=1,B=1
满足条件A≤5,B=3,A=2
满足条件A≤5,B=7,A=3
满足条件A≤5,B=15,A=4
满足条件A≤5,B=31,A=5
满足条件A≤5,B=63,A=6
不满足条件A≤5,退出循环,输出B的值为63.
故选:D.
【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.12.【答案】D
【解析】解:由zi=1+i,得,
∴z的虚部为﹣1.
故选:D.
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
二、填空题
13.【答案】1.
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A(﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
14.【答案】18.2
【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,
∵x=20,
∴y=0.9×20+0.2=18.2(亿元).
故答案为:18.2.
【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.
15.【答案】4.
【解析】解:将代入线性回归方程可得9=1+2b,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
16.【答案】8.
【解析】解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10,
∴x=8,
故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
17.【答案】12()()f x f x >] 【
解
析
】
考
点:不等式,比较大小.
【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 18.【答案】②③④
【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得1
24λμλμ-+=-⎧⎨
+=⎩
,∴21λμ=⎧⎨=⎩,①错误;
a 与
b 不共线,由平面向量基本定理可得,②正确;
记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确; 由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴1
2
λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,
∴④正确;
设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴2133
1133x y x y
λμ⎧=-+⎪⎪⎨⎪=+⎪⎩
,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一
条线段且线段的两个端点分别为(2,4)、(2,2)-
,其长度为
三、解答题
19.【答案】
【解析】解:(1
)由已知得:
.∵α,β
为锐角,∴
.
∴
.∴.
(2)
∵
,
∴.
∵α,β
为锐角,∴,
∴.
20.
【答案】2
cm . 【解析】
试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.
试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.
设正方体棱长为,则1CC x =
,11C D , 作SO EF ⊥于O
,则SO =1OE =,
∵1ECC EOS ∆∆,∴
11CC EC SO EO =
121
x -=,
∴x =
cm
.
考点:简单组合体的结构特征. 21.【答案】
【解析】解:(1)
c=
asinC ﹣ccosA ,由正弦定理有:
sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC •
(
sinA ﹣cosA ﹣1)=0,
又,sinC≠0,
所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,
所以A=;
(2)S
△ABC=bcsinA=,所以bc=4,
a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,
即有,
解得b=c=2.
22.【答案】
【解析】解:(1)由导数的几何意义f′(a+1)=12
∴3(a+1)2﹣3a(a+1)=12
∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b
∴
由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,
∴
∴
∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.
23.【答案】(1)圆与圆相离;(2)定值为2.
【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M的圆心,
DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和
BP 的距离相等,所以两个三角形的面积比值PA
PB
S S APG PBG =
∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.
试题解析:(1) ∵圆N 的圆心)3
5,35(-N 关于直线x y =的对称点为)3
5
,35(-M , ∴9
16)3
4(||2
2
2
=
-==MD r , ∴圆M 的方程为9
16
)35()35(22=
-++y x .
∵3
8
23210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1 24.【答案】
【解析】解:(1)由题意知:S n =n 2
﹣n ,
当n ≥2时,a n =S n ﹣S n ﹣1=3n ﹣2, 当n=1时,a 1=1,适合上式, 则a n =3n ﹣2;
(2)根据题意得:b n ==
=
﹣
,
T n =b 1+b 2+…+b n =1﹣+﹣+…+
﹣
=1﹣
,
∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,
要使T n>对所有n∈N*都成立,只需<,即m<15,则最大的正整数m为14.。