潍坊中学2018-2019学年高三上学期第三次月考试卷数学含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潍坊中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体
积为1V ,多面体BCE ADF -的体积为2V ,则
=2
1
V V ( )1111] A .4
1 B .31 C .21
D .不是定值,随点M 的变化而变化
2. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )
A .2015
B .2016
C .2116
D .2048
3. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3
D2
4. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111] 5. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°
6. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
7. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )
A .y=x+2
B .y=
C .y=3x
D .y=3x 3
8. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 9. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
10.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 11.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
12.在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .
14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
15.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .
16.若函数2
(1)1f x x +=-,则(2)f = .
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本小题满分10分)
已知曲线22
:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩
(为参数). (1)写出曲线C 的参数方程,直线的普通方程;
(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.
18.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;
(2)设1AP =,AD =P ABD -的体积V =
,求A 到平面PBC 的距离.
111]
19.(本题12分)
正项数列{}n a 满足2
(21)20n n a n a n ---=.
(1)求数列{}n a 的通项公式n a ;
(2)令1
(1)n n
b n a =+,求数列{}n b 的前项和为n T .
20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
21.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=
,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.
A
B
C
D
P
22.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .
(1)若圆P 还过点)2,6( C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.
潍坊中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】B 【




点:棱柱、棱锥、棱台的体积. 2. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图. 3. 【答案】C
【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 4. 【答案】D 【解析】

点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.
5. 【答案】A
【解析】解:根据余弦定理可知cosA=
∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2

∴cosA=﹣ ∴A=120° 故选A
6. 【答案】D
7. 【答案】 C
【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x
的图象上.
故选:C .
【点评】本题考查了程序框图的应用问题,是基础题目.
8. 【答案】B 【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B.
考点:1、向量的坐标运算;2、向量平行的性质.
9.【答案】D
10.【答案】C
11.【答案】B
12.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】 ( 1,±2) .
【解析】解:设点P 坐标为(a 2
,a )
依题意可知抛物线的准线方程为x=﹣2
a 2+2=
,求得a=±2
∴点P 的坐标为( 1,±2)
故答案为:( 1,±2
).
【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.
14.【答案】1
ln 2
【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 15.【答案】25 【




点:分层抽样方法.
16.【答案】0
【解析】111]
考点:函数的解析式. 三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】(1)2cos 3sin x y θθ
=⎧⎨
=⎩,26y x =-+;(2)5,5. 【解析】
试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩
,(为参数),直线的普通方程为26y x =-+.
(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.
则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取
.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.
18.【答案】(1)证明见解析;(2. 【解析】

题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .
(2)1366V PA AB AD AB ==,由4
V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313PA AB AH PB ==,所以A 到平面PBC 的距离为
.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.
19.【答案】(1)n a n 2=;(2)=n T )
1(2+n n .

点:1.一元二次方程;2.裂项相消法求和.
20.【答案】
【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分
当2≥n 时,332,33211-=-=--n n n n a S a S ,
∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分
∴数列}{n a 是以3为首项,公比为3的等比数列.
∴数列}{n a 的通项公式为n n a 3=.………………5分
21.【答案】
【解析】解: (Ⅰ)当13
PE PB =
时,//CE 平面PAD . 设F 为PA 上一点,且13
PF PA =,连结EF 、DF 、EC , 那么//EF AB ,13
EF AB =. ∵//DC AB ,13
DC AB =,∴//EF DC ,EF DC =,∴//EC FD . 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥.
又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,
(1,2,0)C -
.由(6)(2PO ==-=知(0,0,2)P . (9分) 设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r 则00
n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =. 设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|2||||
AP n AP n AP n θ⋅=<>==⋅, ∴
πθ=,∴直线PB 与平面PAD 所成角为3π. (13分) 22.【答案】(1)047522=++-+y x y x ;(2)4
25)2()25
(22=-+-y x . 【解析】 试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将
三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为2
5,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.
试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得 ⎪⎩
⎪⎨⎧=+-+-+=++++=++++026)2(60
04040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为04752
2=++-+y x y x . (2)由圆的对称性可知,圆心P 的横坐标为
25241=+,故圆心)2,2
5(P , 故圆P 的半径2
5)20()251(||22=-+-==AP r , 故圆P 的标准方程为425)2()25(22=-+-y x .
考点:圆的方程。

相关文档
最新文档