高考数学压轴专题最新备战高考《函数与导数》分类汇编附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高中数学】数学高考《函数与导数》复习资料
一、选择题
1.函数()1ln f x x x ⎛⎫
=-
⎪⎝⎭
的图象大致是( ) A . B .
C .
D .
【答案】B 【解析】 【分析】
通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当
1x >时,函数的单调性可排除C ,即可得结果.
【详解】
当2x =时,1
10x x
-
=>,函数有意义,可排除A ; 当2x =-时,13
02
x x -
=-<,函数无意义,可排除D ; 又∵当1x >时,函数1
y x x
=-
单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫
=- ⎪⎝
⎭
单调递增,可排除C ; 故选:B. 【点睛】
本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.
2.函数2
2()41
x x x f x ⋅=-的图像大致为( )
A .
B .
C .
D .
【答案】A 【解析】
∵函数()2
2?41x x x f x =-的定义域为(,0)(0,)-∞+∞U
∴22
2()2()()4114x x x x
x x f x f x --⋅-⋅-===---
∴函数()f x 为奇函数,故排除B ,C. ∵2
(1)03
f =>,故排除D. 故选A.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
3.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1
C .2
D .4
【答案】C 【解析】 【分析】
根据对称性即可求出答案. 【详解】
解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】
本题主要考查函数的对称性的应用,属于中档题.
4.已知2
1()cos 4
f x x x =
+,'()f x 为()f x 的导函数,则'()f x 的图像是( )
A .
B .
C .
D .
【答案】A 【解析】
Q ()21f cos 4x x x =
+,()()1
'sin ,'2
f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.
【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +
-
→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.
5.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2
f x f x x -+=成立,
且当()0,x ∈+∞时,都有()'f x x >成立,若()()1
12
f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2
⎛⎤-∞ ⎥⎝
⎦
B .1,2⎡⎫+∞⎪⎢⎣⎭
C .(],2-∞
D .[)2,+∞
【答案】A 【解析】 【分析】
构造函数2
1()()2
g x f x x =-
,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令2
1()()2
g x f x x =-
,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,
Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,
所以(0)0f =,
22
22111()()()()()2
22g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.
又()()112
f a f a a -≥+
-Q ()()()2
211111222
g a a g a a a ∴-+
-≥++-, 即()()1112
g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2
⎛⎤-∞ ⎥⎝
⎦
.
故选:A 【点睛】
本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出
2
1()()2
g x f x x =-
是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.
6
.3
6ax ⎛⎫
- ⎪ ⎪⎝⎭
的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1
【答案】A 【解析】 【分析】
首先根据二项式定理求出a ,把a 的值带入1
1
a
dx x
⎰即可求出结果. 【详解】
解题分析
根据二项式3
ax ⎛- ⎝⎭
的展开式的通项公式得2
21
213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44
a
a ∴=∴=,
则4
4
111
11d d ln 2ln 2a x x x x x ===⎰⎰.
故选:A 【点睛】
本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k k
k n T a b -+=.属于中等
题.
7.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )
A .[0,1]
B .[1,1]-
C .(0,1)(1,)⋃+∞
D .(1,)-+∞
【答案】C 【解析】 【分析】
首先根据复数的几何意义得到z 的轨迹方程2x
y t =-,再根据指数函数的图象,得到关于
t 的不等式,求解.
【详解】
由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,
2a
x a
y b t
=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,
即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】
本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.
8.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}
2
|0?N x x x =-<,则下
列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()
U M N ⊆ð
【答案】A 【解析】 【分析】
求函数定义域得集合M ,N 后,再判断. 【详解】
由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】
本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.
9.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( )
A .1
B .
13
C .
23
D .
12
【答案】B 【解析】 【分析】
利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21x
y e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,
所以曲线21x
y e
-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,
令0y =,解得1x =,令y x =,解得23
x y ==
, 所以切线与直线y 0=和y x =所围成图形的面积为121
1233
⨯⨯=,故选B .
【点睛】
本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.
10.在二项式2
6
()2a x x
+
的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )
A .
146π
+
B .
146
π
- C .
4
π D .
16
【答案】B 【解析】 【分析】
用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】
(x 2+a 2x )6展开式中,由通项公式可得122r 162r
r r r a T C x x --+⎛⎫= ⎪⎝⎭
,
令12﹣3r =0,可得r =4,即常数项为446
2a C ⎛⎫ ⎪⎝⎭,可得4
46
2a C ⎛⎫ ⎪⎝⎭
=15,解得a =2.
曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)
所以阴影部分的面积为()1
223100
1
11
-x-x |4
42346
dx x x π
ππ⎛⎫=
--=- ⎪⎝⎭⎰. 故选:B 【点睛】
本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
11.函数()2sin 2x
f x x x x
=
+-的大致图象为( ) A . B .
C .
D .
【答案】D 【解析】 【分析】
利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
【详解】
()1sin112sin110f =+-=-<,排除,B ,C ,
当0x =时,sin 0x x ==, 则0x →时,sin 1x
x
→,()101f x →+=,排除A , 故选:D . 【点睛】
本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键。
12.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,
()21f x x =-,则( )
A .()123
5log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭
⎝
⎭
B .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭⎝⎭
C .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
D .()2135log 3log 22f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
【答案】A 【解析】 【分析】
推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫
⎛⎫
=-<
⎪ ⎪⎝⎭⎝⎭
,()22
4log 3log 03f f ⎛
⎫
=-< ⎪⎝⎭
,()133log 2log 20f f ⎛⎫
=> ⎪⎝⎭
,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】
因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即
()()20f x f x +-=,
即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,
因为当[]0,1x ∈时,()2
1f x x =-单调递减,
因为5110222f f f ⎛⎫
⎛⎫
⎛⎫
=--=-<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫
=-< ⎪⎝⎭
, ()()1333log 2log 2log 20f f f ⎛⎫
=-=> ⎪⎝⎭
, 因为2
41
0log 132<<<,所以241log 32f f ⎛⎫
⎛⎫-<- ⎪ ⎪⎝
⎭
⎝⎭
, 所以,1
2314log 2log 23f f f ⎛⎫
⎛⎫
⎛⎫>->- ⎪ ⎪ ⎪⎝⎭
⎝
⎭
⎝⎭
,即()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
,
故选:A . 【点睛】
本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.
13.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()2
2f x f x x +-=,在()0+∞,
上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )
A .[)2+∞,
B .[)0+∞,
C .[]
22-,
D .(][)22-∞-⋃+∞,
, 【答案】A 【解析】 【分析】
通过x R ∀∈有()()2
2f x f x x +-=,构造新函数()()2
g x f x x =-,可得()g x 为奇函
数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式
()()4168f m f m m --≥-转化,可求实数m 的取值范围.
【详解】
设()()2
g x f x x =-,
∵()()()()2
2
0g x g x f x x f x x +-=-+--=,
∴函数()g x 为奇函数,
∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,
∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,
∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,
∴()()()22
44168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣
⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】
本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.
14.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .
3
2
C .2
D .
34
【答案】B
【解析】 【分析】
将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程
()0f x =可得出函数()y f x =的零点.
【详解】
141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,
2k ∴=-,()2 3.f x x =-+故()f x 的零点为3
2
,故选B.
【点睛】
本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.
15.已知函数()
()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对
称,当[]0,1x ∈时,()2020x
f x =,则()2020f =( ) A .2020 B .12020
C .11010
D .0
【答案】D 【解析】 【分析】
根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得
()()20200f f =,由函数的解析式计算可得答案.
【详解】
解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有
()()4f x f x -=-+,
函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,
()()()20200505400f f f ∴=+⨯==;
故选:D . 【点睛】
本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.
16.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞
C .(,3)-∞
D .27(,
)5
-∞ 【答案】D 【解析】 【分析】
把220x ax -+>在区间[]1,5上有解,转化为存在一个[]
1,5x ∈使得
22
x 2ax x a x
+>⇒+
>,解出()f x 的最大值. 【详解】
220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得
22x 2ax x a x +>⇒+>,设()2
f x x x
=+,即是()f x 的最大值a >,()f x 的最大值27
5=
,当5x =时取得,故选D 【点睛】
17.已知函数
在区间
上有最小值,则函数
在区间
上一定( )
A .有最小值
B .有最大值
C .是减函数
D .是增函数
【答案】D 【解析】 【分析】 由二次函数
在区间
上有最小值得知其对称轴
,再由基本初等函数的单调性或单调性的性质可得出函数在区间
上的单调性.
【详解】 由于二次函数
在区间
上有最小值,可知其对称轴
,
.
当时,由于函数
和函数在上都为增函数,
此时,函数在上为增函数;
当
时,
在
上为增函数;
当时,由双勾函数的单调性知,函数在上单调递
增,
,所以,函数
在
上为增函数.
综上所述:函数在区间
上为增函数,故选D.
【点睛】
本题考查二次函数的最值,同时也考查了
型函数单调性的分析,解题时要注意对
的符号进行分类讨论,考查分类讨论数学思想,属于中等题.
18.
40
cos2d cos sin x
x x x
π
=+⎰
( )
A .21)
B 21
C 21
D .22【答案】C 【解析】 【分析】
利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】
因为22cos2cos sin cos sin cos sin cos sin x x x
x x x x x x
-==-++,
∴4
400cos 2d (cos sin )d (sin cos )214cos sin 0
x
x x x x x x x x π
π
π
=-=+=+⎰
⎰,故选C . 【点睛】
本题考查三角恒等变换知与微积分基本定理的交汇.
19.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,
()20f -=,则()36f x x <+ 解集为( )
A .(),2-∞-
B .()2,2-
C .(),2-∞
D .()2,-+∞
【答案】D 【解析】 【分析】
设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解. 【详解】
设()()36g x f x x =--,
Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,
又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,
∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.
故选:D. 【点睛】
本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.
20.已知函数f (x )=2x -1
,()2cos 2,0?
2,0a x x g x x a x +≥⎧=⎨+<⎩
(a ∈R ),若对任意x 1∈[1,+
∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()
A .1,
2⎛⎫-∞ ⎪⎝⎭
B .2,3⎛⎫+∞
⎪⎝⎭
C .[]1,
1,22⎛
⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦
U 【答案】C 【解析】 【分析】
对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】
当a =0时,函数f (x )=2x -
1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意.
当a <0时,y =2
2(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],
因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <
1
2
,即a <0. 当a >0时,y =2
2(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥
2
3时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨
+≥⎩
. 当0<a <
23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <1
2
. 综合得a 的范围为a <1
2
或1≤a ≤2, 故选C . 【点睛】
本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.。